Oct 022016

By Ori Fox (STScI)

Core-collapse supernovae (SNe) are the explosions of massive stars (>8 Msun) that reach the end of their lifetime. No longer able to radiatively support themselves by nuclear core burning after depleting their fuel, the stars collapse and release gravitational energy that rips apart the star entirely. The resulting explosions exhibit differences in their spectra and light curves that can be grouped into one of several subclasses.

From a theoretical perspective, these differences once seemed straightforward. Single star models indicate that the strength of a stellar wind increases as a function of the star’s initial mass and metallicity (Heger et al. 2003). In turn, stronger winds can remove more of a star’s outer envelope, resulting in the distribution of observed SN subclasses. Accordingly, a Type II SN has hydrogen in the spectrum, suggesting a lower mass (~8-25 Msun) red supergiant (RSG) progenitor. In contrast, a Type Ic SN has neither hydrogen nor helium in its spectrum, suggesting a higher mass (>40 Msun) progenitor.

Direct images of the individual stars before they explode provide the strongest observational constraints, but are difficult to obtain because they require deep, high-resolution, multi-color, pre-explosion imaging. Before the Hubble Space Telescope (HST) was launched, one of the few progenitors directly observed was the progenitor to SN 1987A in the Large Magellanic Cloud (LMC) at just 0.05 Mpc. The Cerro Tololo Inter-American 4-meter telescope obtained several images of the LMC between 1974 and 1983 (Walborn et al. 1987). The direct observations showed a progenitor consistent with a blue supergiant, which contradicted most stellar evolution theory and set the field on the course it is still on today.

AAT 50. The field of supernova 1987A, before and after (March, 1

Figure 1: The famous SN 1987 both before (right) and during (left) the explosion. The exploding star, named Sanduleak -69deg 202, was a blue supergiant.

Ground-based imaging is only sufficient for detecting progenitors out to 1-2 Mpc. HST extended this range out to about 20 Mpc. Cost and time, however, prohibit HST from obtaining pre-explosion imaging of the thousands of galaxies within this volume. Instead, these data must be obtained serendipitously via other science programs. The number of galaxies with pre-explosion imaging has grown steadily since HST was launched in 1990. With only a few SNe within this volume each year, a statistically significant sample of SNe with corresponding HST pre-explosion images was not accumulated until the mid-2000s (Smartt 2009). As predicted by the theory, Type II SNe had RSG progenitors. The most mystifying result, however, was the fact that the Type I SNe (i.e., those without hydrogen) had no confirmed massive (and thereby luminous) star progenitors, even to very deep limits.

The solution to this mystery is still not solved but may involve binary star progenitor systems, which are now known to account for ~75% of massive star systems (Sana et al. 2012). As opposed to single stars systems, where stars lose their envelopes in their winds, a binary companion star can remove the outer envelope of the primary via tidal stripping. This process allows for increased mass-loss from lower mass, less luminous stars that may evade detection in pre-explosion imaging. This scenario has long been preferred for a specific subclass referred to as the Type IIb (i.e., a hybrid of the Type II and Ib subclass) since most, but not all, of the outer Hydrogen envelope is removed.


Figure 2: This illustration shows the key steps in the evolution of a Type IIb supernova. Panel 1: Two very hot stars orbit about each other in a binary system. Panel 2: The slightly more massive member of the pair evolves into a bloated red giant and spills the hydrogen in its outer envelope onto the companion star. Panel 3: The more massive star explodes as a supernova. Panel 4: The companion star survives the explosion. Because it has locked up most of the hydrogen in the system, it is a larger and hotter star than when it was born. The fireball of the supernova fades. (Credit: NASA, ESA, and A. Feild (STScI))

While the primary (i.e., exploding) star in the binary system may be too faint to be detected in the pre explosion imaging, the companion star may be bright enough to test the binary hypothesis. As the primary star loses mass, the companion will gain mass and become more luminous and blue. Despite these changes, detecting the companion star in a binary system is not straightforward. The stellar spectrum of the companion will peak towards the ultraviolet (UV). Since most serendipitous pre-explosion imaging does not consist of UV observations, a UV search for the companion must occur only once the SN has faded. To date, a companion star has only been observed in a single instance for the Type IIb SN 1993J in M81 at just 3.5 Mpc (Maund et al. 2004, Fox et al. 2014).


Figure 3: This is an artist’s rendition of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a binary system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. HST identified the UV glow of the surviving companion embedded in the fading glow of the supernova. (Credit: NASA, ESA, and G. Bacon (STScI))

The future of progenitor detections lies with HST and the James Webb Space Telescope (JWST). HST offers UV-sensitive instruments that allow us to search for the binary companions to these stripped envelope SNe. JWST will offer more than 7 times the light collecting area than HST. While JWST lacks UV capabilities necessary for companion star searches, it will increase the sensitivity to primary stars that peak at redder wavelengths. This increased sensitivity will not only provide stronger constraints on the progenitors, but it will allow progenitor searches to extend out to larger distances, thereby increasing the search volume and sample size. These new progenitors discoveries will have direct implications on our understanding of star formation, stellar evolution models, and mass loss processes.


  • Heger, A., et al. 2003, ApJ, 591, 288
  • Walborn, N. R., et al. 1987, ApJ, 321, L41
  • Smartt, S. 2009, ARA&A, 47, 63
  • Smith, N., et al. 2011, MNRAS, 412, 1522
  • Sana, H., et al. 2012, Science, 337, 444
  • Maund, J., et al. 2004, Nature, 427, 129
  • Fox, O. D., et al. 2014, ApJ, 790, 17

Sorry, the comment form is closed at this time.