Aug 012016
 

By Anthony Marston, European Space Agency/STScI

What are Wolf-Rayet stars?

Wolf-Rayet (WR) stars are believed to be evolved massive stars that initially started their lives with masses of  > 20 Msun. With such high masses, they evolve very quickly to the WR state from high-mass hydrogen burning O stars in 1-2Myr. Currently, evidence suggests that the majority of WR stars are either in or affected by having been in relative close binaries, that can affect their evolution.

There are several evolutionary paths and theories as to the evolutionary direction of WR stars. It is postulated that different evolutionary paths exist depending on the how much initial mass exists above 20 Msun, as well as whether they are single or binary stars. For most WR stars, a mass-loss phase of a few tens of thousands of years probably occurs. Evidence for this is seen in the nitrogen-enriched ejecta nebulae that are seen around many WR stars. Ejecta are believed to be associated with a slow wind phase following the fast wind of the main sequence O star phase. Once evolved to a WR star there is again a fast wind phase which can quickly interact with a slow moving ejecta nebula. But not all WR stars are seen to have ejecta.

There are three subtypes of WR stars: WN subtypes show prominent nitrogen emission lines in their spectra, WC subtypes show prominent carbon emission lines, and WO subtypes show strong high excitation oxygen emission lines. These form an apparent evolutionary sequence with the spectra showing the products of Hydrogen burning for WN stars, Helium burning for WC star spectra and higher level burnings for WO stars. WO subtype stars in the Galaxy are very rare (three are known) and probably represent a final WR evolutionary phase before becoming a supernova (probably of type Ib).

How common are they and how are they distributed in the Galaxy?

By the end of 2000 just over 200 WR stars were known in the Galaxy. Most of these were discovered in studies of clusters or serendipitously. They were shown to follow the spiral pattern of the Galaxy and showed a distribution that mimicked other Galactic star formation site indicators. Indeed, WR stars have in various ways been used as markers of very recent high-mass star formation and star formation bursts since they only live a few million years.

In his review of WR stars, Karel van der Hucht (2001) indicated that the likely population of WR stars in the Galaxy could be several thousand rather than the few hundred known. This was in part due to obvious observational restrictions, such as unseen populations on the opposite side of the Galaxy. With the advent of sensitive infrared detectors the possibility of finding distant and/or obscured WR stars became more realistic. Two approaches have been developed for finding Galactic WR stars in recent years.

The “narrow-band” approach (Shara et al. 2009) uses narrow-band images centered on strong emission lines seen in WR stars (e.g. HeII) and subtracts from them narrow-band images covering only the continuum (or broad-band infrared images). The candidates revealed are followed up with infrared and/or optical spectroscopy to confirm their nature.

The “broad-band” approach is based on the near- to mid-infrared colors which are peculiar to stars with strong winds – and in particular WR stars. Figure 1 shows how the free-free emission from the fast WR wind of the nearby WR star WR11 (g Vel) has a distinct spectral index which is substantially different from stellar photospheres leading to WR stars being overabundant in certain areas of broadband infrared (2MASS, Spitzer/IRAC, WISE) point source color-color space (see Figure 2). Even though the this approach is slightly more prone to confusion issues than the “narrow-band” method, it has a couple of advantages over the latter: the potential for picking up weak-lined WR stars or ones where lines are diluted relative to the continuum due to a massive companion or local hot dust emission. It also uses already existing infrared point source catalogs (e.g. the GLIMPSE catalog of source within | b < 1 | in the Galactic plane). As of July 2016, the total number of known Galactic WR stars is 634 (http://www.pacrowther.staff.shef.ac.uk/WRcat/).

figure1Figure 1: Spectral energy distribution of g Velorum (Williams et al. 1990) showing the excess free-free emission from the stellar wind in the infrared wavelengths as compared to photospheric emission (straight black line). The GLIMPSE catalog which used Spitzer/IRAC data will show WR stars with colors distinct from the vast majority of stars.

Our group, with core members Schuyler Van Dyk (Caltech), Pat Morris (Caltech), Jon Mauerhan (UC Berkeley) and Anthony Marston (ESA-STScI), uses the broad-band method. It was first developed by Marston in 2004 to identify candidates in ESO/SOFI infrared spectroscopic observations and it helped identify 60 new WR stars by Mauerhan et al (2011). The color selection uses data from the GLIMPSE catalog, consisting of several 10’s of million sources detected in the Galactic plane using broadband Spitzer/IRAC 3.4 – 8 mm measurements combined with band-merged flux data from 2MASS (broadband near-infrared JHKs). In certain studies, X-ray emission sources and, more lately, WISE point source colors have been used in identifying WR candidates.  Spectroscopic follow-up has concentrated on obtaining K-band spectra, as WR stars are typically identified by strong HeII emission lines such as the 2.189mm line. For the less reddened candidates, optical spectroscopic follow-up has also been possible.

Historically we have found that 10-15% of candidates turn out to be bona fide WR, stars while~ 85% of all candidates are emission-line stars, most often Be stars. Small numbers of O/Of stars B[e] supergiants and stars exhibiting infrared CO bandhead absorption lines have been picked up where combinations of photosphere, dust emission and free-free emission has brought objects into our infrared color space. Improvements to our color-space selection have increased the success rate of WR detections out of the candidates, notably for more reddened/distant objects where the candidate confirmation rate can go as high as 25% (see Figure 2). We are currently looking into a machine-learning capability for assessing the likelihood of an object being a WR star from color-space criteria. The ultimate goal is to be able make accurate predictions of WR numbers of different subtypes in the Galaxy.

figure2

Figure 2: Infrared color-color plots showing the candidate objects observed by Mauerhan et al (2011). The green symbols were newly discovered WN subtypes and red WC subtype stars. Blue points represent candidates that follow up spectroscopy showed were not WR stars. Grey shaded areas indicate the part of the color-color plots where 50% or more candidates were found to be WR stars.

What have WR stars taught us about high-mass star formation?

The number ratios of WR to O stars and Red Supergiant (RSG) or Luminous Blue Variable stars are key values for constraining stellar evolution theories of massive star evolution. In a simple way, ratios provide an indication of relative timescales for lifetimes. Another indication of timescales, and possibly different evolutionary links between subtypes, mass-loss phases and initial stellar masses, is the number distribution of WR subtypes, both WN and WC (plus the rare WO stars).

The distribution of WR stars (studied e.g. using the Spitzer’s GLIMPSE survey across the Galactic plane) marks star formation sites across the Galaxy and indicate likely sites of future supernovae. However, it has become clear over time that many WR stars, that are no more than a few Myr in age, appear to be found well away from the centers of star-forming clusters in the Galaxy. A projection of most of the known WR stars with secure distance shows that some WR stars also appear to be more than 100 pc above/below the plane of the Galaxy (Rosslowe & Crowther, 2015). A possible explanation of why some WR stars appear to be located away from their birth site could be the presence of fast transverse motions caused by expulsion from their cluster formation site. Another possibility could be that these stars were part of small clusters but, being much more luminous than other cluster members, they appear to be isolated. But in recent years, in the study of star-forming regions like the Cygnus OB2 cluster, we have learned of an unexpected third possible explanation.

Various studies suggest that the Cygnus OB2 cluster, being 1 Myr of age, has not evolved significantly from its original distribution. This means that the massive stars, and WR stars in particular, are near the sites where they were born. However, none of the WR stars are in the massive star cluster at the center of the Cyg OB2 association (see Figure 3), and not only that, none show evidence of bow shocks from significant transverse velocities, suggesting these stars were born in situ. We now know, from studies with Herschel, that filaments of high-density gas can extend through star-forming regions with “strings” of star-forming cores being found along them. And in fact, filaments pervade the Cyg OB2 area leading to the possibility of forming high-mass stars outside of major stellar clusters, possibly instigated to form high-mass stars through a triggering event, such as expanding gas shell collisions.

fig3

Figure 3: The Cygnus OB2 association as seen by Herschel PACS/SPIRE (colored background from Schneider et al, 2016). WR stars and Luminous Blue Variable stars (likely precursors of WR stars in stellar evolution) are found well away from the major cluster of O stars shown as white points a bit to the right of center of the field (Comeron et al 2008, Wright et al 2015).

There are therefore two possible scenarios:

  • WR stars are born in situ and away from stellar clusters (but likely within stellar associations) – which means distributed high-mass star formation occurs for some of the most massive stars probably from filaments.
  • WR stars are kicked out of stellar clusters due to dynamics of the early cluster of stars or through binary/supernova interactions, apparently affecting a large fraction of the very massive stars in the stellar cluster.

As we have seen, the study of Wolf Rayet stars has shed new light on unexpected physical processes associated to high-mass star formation. In the future, we will advance their study by: (1) Using machine-learning and improved color-selection techniques to find new WR stars and assess their distributions in the Galaxy, including in high-mass star-forming regions. (2) Pinning down number ratios of WR subtypes and other massive star types. (3) Using the GAIA catalog to get proper motions of WR stars to identify runaway stars. (4) Searching for bow shocks, in particular in the mid-infrared with WISE, as it has been found that they are particularly prominent at IR wavelengths.

 

References:

  • Blaauw,  A.,1993, ASPC, 35, 207
  • Comeron et al, 2008, A&A, 486, 453
  • Crowther et al, 2006, MNRAS, 372, 1407
  • van der Hucht, K., 2001, New AR, 45, 135
  • Mauerhan, J., et al, 2011, AJ, 142, 40
  • Rosslowe, C., & Crowther, P., 2015, MNRAS, 447, 2322
  • Schneider, N., et al, 2016, A&A, 591, A40
  • Shara et al, 2009, AJ, 138, 402
  • Williams, P., et al, 1990, MNRAS, 244, 101
  • Wright, N., et al, 2015, MNRAS, 449, 741

 

Sorry, the comment form is closed at this time.