May 272017
 

By Jeffrey Cummings (STSCI and Johns Hopkins University).

Stars evolve through many phases in their lifetime. Towards the end, when they have fused all of the Hydrogen (H) in their cores to Helium (He), they expand, cool down, and become giants. During these final stages, stars also begin to lose a significant amount of mass from their surfaces. A star like our Sun will lose approximately 50% of their mass, while more massive stars (> 8 Msun) will lose as much as 80% to 85%. Nearly all stars will eventually shed their outer layers and expose their hot and ultrahigh density cores. These remnants are called white dwarfs and, unless they experience mass transfer from a companion, their fate is to slowly cool with time.

However, a small percentage (approximately less than 2%) of high-mass stars can reach the necessary high densities and pressures in their cores to undergo a different fate: iron (Fe) will be created in their central core, but because it cannot undergo fusion to continue to generate energy, the star eventually becomes unstable and gravitationally collapses on itself creating a core-collapse supernova (CCSN). While it is commonly adopted in astronomy that stars with initial masses greater than 8 Msun will end their lives as a CCSN, we still do not fully understand at which stellar mass this transition occurs.

Knowledge of this transition mass is important because it sheds light on stellar evolution processes like mass-loss and convection/dredge up, and on the CCSN rate and how large of an effect these supernovae have on the production of elements (important to understand chemical evolution), on the energetics/feedback in galaxies, and on star formation.

Determination of the CCSN Mass Transition

There are three main methods to determine this mass. They all have their challenges and limitations, but jointly they may be able to begin to precisely constrain this transition mass:

1) Supernova studies. With the ability of the Hubble Space Telescope to resolve stars out to nearby galaxies, when a nearby CCSN occurs there is likely deep and resolved archival images of the progenitor star. Additionally, the stellar population of lower-mass stars that formed with the progenitor can subsequently be observed. Using stellar evolutionary models and the photometry of the progenitor and/or of the nearby lower-mass stars that formed with it, it is possible to infer the progenitor’s mass (e.g., Smartt 2009, Smartt 2015, Williams et al. 2014, Jennings et al. 2014). Within the past several years, the sample of nearby supernova has increased enough to provide meaningful statistics, indicating that the lowest-mass stars that undergo supernova have masses of ~9.5 Msun (Smartt 2015; Figure 1). These data also suggest that stars more massive than 18 Msun likely collapse but do not undergo an observable supernova.

BlogFig1Figure 1:  Nearby supernovae are displayed with their inferred initial masses and errors.  These masses are based on STARS and Geneva models (Eldridge & Tout 2004; Hirschi et al. 2004).  In solid black, a trend is fit to the data suggesting a lower limit of ~9.5 Msun.  In dashed black a second trend illustrates the expected number of stars at each initial mass based on a Salpeter initial mass function.  This shows that such a large number of 10 to 17 Msun supernovae progenitors should be accompanied by a smaller but observable number of higher mass supernovae progenitors.  This suggests that stars with mass greater than ~18 Msun may not undergo standard observable supernovae.

2) Stellar evolution models. A second method to estimate the CCSN transition mass is to use stellar evolution models to determine at which mass the core will reach the necessary conditions to create an Fe core and induce core-collapse (or produce an electron-capture CCSN). While a variety of models currently exist to account for the complex physical processes involved, many of them are beginning to converge around 9.3–9.8 Msun (Eldridge & Tout 2004, Poelarends 2007, Ibeling & Heger 2013, Doherty et al. 2015). Figure 2 illustrates the models from Doherty et al. (2015) and the transition masses at differing composition, with solar being represented by Z = 0.02.

BlogFig2

Figure 2: This diagram illustrates the evolutionary result of a star with an initial mass at a given composition (Z = total mass fraction of a star that is not H or He), where solar composition is Z = 0.02.  This model distinguishes between the different types of white dwarfs (WDs) and illustrates where white dwarf formation ends and supernovae begin.  These models suggest a narrow region where electron-capture supernovae (ECSN) occur followed by the traditional Fe-core CCSN and shows that composition is an important secondary variable in these mass transitions.

3) White dwarf studies. Another way to constrain the transition mass is to study the remnants of the stars that do not undergo CCSN, i.e. white dwarfs. Spectroscopic analysis of high-mass white dwarfs in star clusters, together with evolutionary models, allow us to both directly determine the mass of the white dwarf and to infer the mass of the white dwarf’s progenitor. This is known as the initial-final mass relation (IFMR). Figure 3 illustrates the IFMR derived from white dwarfs across multiple clusters and a broad range of masses (Cummings et al. 2015; 2016a; 2016b; in prep.), and with evolutionary timescales based on PARSEC stellar models (Bressan et al. 2012). The IFMR provides a direct constraint on the mass loss that occurs during stellar evolution and how it varies with initial mass. In terms of constraining the CCSN transition mass, there currently are very few ultramassive white dwarfs that have been discovered in star clusters, but our current project is to survey for more white dwarfs approaching the highest mass a white dwarf can stably have (the Chandrasekhar mass limit at 1.375 Msun). The initial mass of a star that will create a Chandrasekhar mass white dwarf will also define the CCSN transition mass, which will provide a critical check of the other methods. However, based on cautious extrapolation, we note that our current relation suggests a consistency with the CCSN mass transition occurring near 9.5 Msun.

BlogFig3

Figure 3: The current IFMR based on the spectroscopic analysis of white dwarfs that are members of star clusters.  Comparison of the spectroscopically determined mass and age of the white dwarf can in comparison to the age of the cluster be traced back to the mass of the star that would have formed a white dwarf at that time.  The solid line represents a fit to the data while the dashed line represents the theoretical IFMR of Choi et al. (2016).  This shows a relatively clean relation with the clear formation of larger and larger white dwarfs from larger and larger stars.  The highest-masses, however, remain poorly constrained, but precise measurement of where this relation reaches the Chandrasekhar mass (1.375 Msun; the upper limit of the y-axis), will define the progenitor mass at which stars begin to undergo CCSN.

The three methods described above, mostly independent from each other, are beginning to suggest a convergence around a CCSN transition mass of ~9.5 Msun. This implies that the commonly adopted value of 8 Msun, which is based on older and more limited data and theoretical models, has led us in the past to overestimate the number of CCSN by ~30%. Such an overestimation would greatly affect our understanding of the chemical evolution, energetics, and feedback in galaxies. Furthermore, the maximum mass for CCSN inferred by Smartt (2015), 18 Msun, further decreases the number of expected CCSN in a stellar population. This may solve the supernova rate problem that resulted from assuming that all stars with a mass greater than 8 Msun should undergo a CCSN. Under that assumption, the number of predicted CCSN is twice the observed rate (Horiuchi et al. 2011). But if only stars in the 9.5–18 Msun mass range undergo CCSN, based on the standard Salpeter stellar initial mass function, the new estimated CCSN rate is almost exactly half of the original estimate. This would bring observations and models into remarkable agreement.

Future work

Significant work remains to be done. More nearby supernovae need to be observed, with subsequent study of their progenitors, to further constrain their lower and upper mass limits. More ultramassive white dwarfs need to be discovered in star clusters, a focus of our research group, to refine our understanding of higher-mass stars and their mass-loss processes. Increasing the white dwarf sample size will provide an independent measurement of the CCSN transition mass, and it may also begin to provide an important observational test for the effects of differing stellar composition on mass-loss, evolution, and this mass transition. For stellar evolution models, a more coordinated approach between these observations and theory will improve the models, which also affects the inference of progenitor masses in the supernova and white dwarf studies. An iterative process, aiming for self-consistency across all steps, will ideally bring a more precise convergence of the mass transition at which supernova begin to occur. In any case, the assumption that all stars with mass greater than 8 Msun will undergo a CCSN is appearing more and more inaccurate.

References:

  • Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102
  • Cummings, J. D., Kalirai, J. S., Tremblay, P.-E., & Ramirez-Ruiz, E. 2015, ApJ, 807, 90
  • Cummings, J. D., Kalirai, J. S., Tremblay, P.-E., & Ramirez-Ruiz, E. 2016a, ApJ, 818, 84
  • Cummings, J.D., Kalirai, J.S., Tremblay, P.E., Ramirez-Ruiz, E., & Bergeron, P. 2016b, ApJ, 820, L18
  • Doherty, C.L., Gil-Pons, P., Siess, L., Lattanzio, J.C., & Lau, H.H.B. 2015, MNRAS, 446, 2599
  • Eldridge, J. J., & Tout, C. A. 2004, MNRAS, 353, 87
  • Hirschi, R., Meynet, G., & Maeder, A. 2004, A&A, 425, 649
  • Horiuchi, S., Beacom, J. F., Kochanek, C. S., Prieto, J. L., Stanek, K. Z., & Thompson, T. A. 2011, ApJ, 738, 154
  • Ibeling D., Heger A., 2013, ApJ, 765, L43
  • Jennings, Z. G., Williams, B. F., Murphy, J. W., Dalcanton, J. J., Gilbert, K. M., Dolphin, A. E., Weisz, D. R., & Fouesneau, M. 2014, ApJ, 795, 170
  • Poelarends A. J. T., 2007, PhD thesis, Astronomical Institute Utrecht (P07)
  • Smartt, S. J. 2009, ARA&A, 47, 63
  • Smartt, S.J. 2015, PASA, 32, 16
  • Williams, B. F., Peterson, S., Murphy, J., Gilbert, K., Dalcanton, J. J., Dolphin, A. E., & Jennings, Z. G. 2014, ApJ, 791, 105
Dec 132016
 

By Bradley M. Peterson (STScI and The Ohio State University)

Sometimes you design a perfectly good experiment based on years of experience and a wealth of previous data. You develop some models and carry out simulations that show you’ve designed an experiment that can recover your models. This lets you write a really compelling proposal and – eventually – you have the opportunity to carry out that experiment. And then the results surprise you. Because simulations are just that, simulations: they’re only as good as the physics you know to put in. You can’t account for what Donald Rumsfeld famously called the “unknown unknowns”. We found things we weren’t expecting, but on the other hand we found some things we were expecting and learned some new things as well.

My example is a spectroscopic monitoring program that was undertaken with HST in Cycle 21 with the goal of probing the inner structure of an active galactic nucleus (AGN, often called quasars, when they’re luminous enough). Together with its ground-based counterpart, this program is known as the AGN Space Telescope and Optical Reverberation Mapping (AGN STORM) project. Our goal is to understand how the supermassive black holes at the centers of galaxies are fueled.

The current paradigm for AGN inner structure (Figure 1) is that at the center of these systems is a central supermassive black hole (typically a million to several billion solar masses) surrounded by a hot accretion disk that extends out to tens of gravitational radii (Rg = GM/c2, where M is the black hole mass). On scales of a few hundred to several thousand gravitational radii, there is diffuse gas that absorbs the ionizing radiation from the accretion disk and reprocesses it within minutes into emission lines. The emission lines are strongly Doppler broadened because they are in the deep gravitational potential of the black hole. The geometry and kinematics of this “broad-line region” (BLR) remain elusive since these properties cannot be deduced from direct imaging as they project to less than 100 mas (milliarcseconds) even in the most favorable cases. What we know about the inner structure of AGNs is based on flux variability.

AGNstructure

Figure 1. Classic schematic of the inner structure of an AGN from Urry & Padovani (1995). Here I restrict attention to the central black hole, surrounding accretion disk, and the broad-line region.

The continuum radiation from the accretion disk varies with time (as I’ll describe elsewhere) and the broad emission lines respond, but with a delay due to the mean light travel time across the BLR. This is the basis of the technique known as “reverberation mapping” – the emission lines appear to “reverberate” in response to the changing continuum, and measurement of the timescale can be converted to a size estimate (for a technical primer on reverberation mapping, see Peterson 1993). While gas is spread throughout the BLR, the response of any particular emission line is relatively localized to where some combination of emissivity (photons emitted per unit volume) and responsivity (rate of change in emissivity per unit continuum change) are maximized for that line. At any given time, the highest-ionization lines respond more rapidly than lower-ionization lines, demonstrating ionization-stratification of the BLR.  For any given emission line, the radius at which the peak response occurs depends on the mean continuum brightness: the peak response occurs at longer lags when the AGN is brighter (Figure 2). What makes this interesting is that if you compare the measured lags with the line widths, you find that the Doppler width ΔV is inversely correlated with the time lag τ (Figure 3), consistent with ΔV ∝ τ -1/2, which is what you’d expect if the dynamics of the BLR are dominated by the gravitation of the central black hole – strictly speaking, it implies a 1/r2 force, so radiation pressure will have the same signature, but that’s a detail we can worry about later.  In any case, without knowing the net motion of the BLR – which could be inflow, outflow, rotation, or mostly likely some combination of all of these – we can construct a “virial product” ΔV2 cτ/G that is proportional to the black hole mass. Actually getting the mass, though, requires knowing more about the structure and kinematics of the BLR, as well as its orientation. In the absence of this knowledge, we parameterize our ignorance into a single dimensionless parameter f defined by M = f × ΔV2 cτ/G. If, for example, the BLR is a simple flat disk (it’s not…) lags are insensitive to inclination, as long as the emission-line photons aren’t absorbed within the disk, and orbital velocities project as sine of the inclination i, so f = 1/sin2i. Our goal is to determine the structure and kinematics of the BLR, which is equivalent to knowing f and thus M for a particular AGN. It turns out this is hard.

AGN_RL

Figure 2. The relationship between the size of the broad-line region as measured from the Hβ emission line and the luminosity of the AGN (Bentz et al. 2013).

viral_4galaxies_color

Figure 3. The relationship between emission-line Doppler width and reverberation lag for multiple emission lines in four AGNs. The ΔV ∝ τ -1/2 dependence is expected for a system dominated by the gravity of the central black hole. The dashed lines are the best fits to the data, and the solid lines have a forced slope of -1/2.  Based on data from Peterson & Wandel (2000) and Onken & Peterson (2002).

Reverberation signals are quite weak: over the BLR light travel time, the continuum and emission-line fluxes generally vary only a few to several per cent, at most. Over many light travel times, the flux variations can be larger, 10% or more. This tells us right away that we’re going to need high signal-to-noise, homogeneous spectra that are well-sampled in time over a long duration. This also tells you something about why progress in reverberation mapping has been slow – it requires a lot of telescope time. Consequently most reverberation experiments are carried out on relatively small telescopes on apparently bright, relatively nearby AGNs. Even then, the data are generally of insufficient quality to discern the structure and kinematics of the BLR, so the factor f remains undetermined. We can, however, compute an ensemble average value for f if we have another mass indicator that we trust. The one we have been using is the M- σ relationship, the apparently tight correlation between central black hole mass and the stellar velocity dispersion of the host galaxy bulge σ, that has been found for non-active galaxies. If you plot the virial product versus σ for AGNs, you see a relationship that is parallel to the M- σ relationship, and if you multiply the virial product by a factor of 4 or 5, the two relationships are indistinguishable (Figure 4). Thus < f > ~ 4 – 5. There are only a few AGNs where the black hole mass can be measured directly by stellar dynamics, and these show consistency with the reverberation estimates to within the uncertainties of around a factor of 3 or so.

Msigma

Figure 4. The relationship between black hole mass and host galaxy bulge velocity dispersion, known as the M- σ relationship. The red points are for quiescent (non-active) galaxies and the blue and green points are for AGNs. From Grier et al. (2013).

But we still want to know what the BLR gas is actually doing and, in the process, make more accurate mass measurements. Moreover, we’d really like to get reverberation measurements for the strong UV lines, like Ly α λ1215 and C IV λ1549: much of the BLR emission is in these lines and we know from several International Ultraviolet Explorer (IUE) reverberation programs from over 20 years ago that the lags for the UV lines are about half those of the hydrogen Balmer lines in the optical, so they probe a different part of the BLR. The IUE data were ground-breaking, but not high-enough quality to determine the structure and kinematics of the BLR, only the mean lags. That would require Hubble and its superb spectrometers.

Hubble time is hard to get, especially if you need a lot of it. We knew that we’d need a really compelling science proposal and a seamless technical case for the large allocation to do a reverberation program right. We started out assuming that a realizable cadence would be one observation per day, that a single visit must yield spectra of the required quality in a single orbit, and that the program would have to be completed with no significant gaps in one observing season. This put constraints on the luminosity of the AGN (since the BLR size depends on it), its apparent brightness, and its location on the sky. We further desired a target AGN that was previously well-studied so we could avoid AGNs where the UV emission lines were strongly self-absorbed and so we could accurately model its behavior to determine how many orbits we would actually require – the number of orbits was the most difficult parameter to pin down, since sometimes AGN flux variations behave in ways favorable for a reverberation-mapping experiment, and sometimes they don’t. Our success rate on the ground is typically around 60% or so, so this is kind of a high-risk business. After lots of simulations, we determined that NGC 5548 was the best target and that our best estimate of the required number of visits was 180. None of our simulations succeeded with fewer than 100 visits, about half succeeded with 150 visits, but all of them succeeded with 180 visits.

We first submitted this proposal in Cycle 12 in 2003. We were finally awarded the time to carry this out in Cycle 21 – this is either a case study in perseverance or obsession, I’m still not sure which. It was a challenging program to schedule and execute, but the schedulers did a wonderful job, and we wound up with 171 epochs with only a few one or two-day gaps due to safing events, against which our program was robust, as anticipated in our simulations. We had to deal with some complications, such as moving to different positions on the detector to avoid depletion by geocoronal Ly α, but this only complicated the data reduction and didn’t adversely affect the final results. A major amount of work went into completely recalibrating the Cosmic Origins Spectrograph because our data-quality requirements exceeded specifications of the standard pipeline reduction.

The final light curves are beautiful (Figure 5), although some of the behavior was surprising, even in our initial quick-looks based on standard pipeline reduction. For the first 60 days of the program, things looked nominal – the emission-line light curves look like a smoothed and time-shifted version of the continuum light curve, though the time shifts (or lags) are shorter than we expected. After this, the emission lines behavior began to deviate from the expected linear response in a complicated way.

LightCurves

Figure 5. Light curves based on HST COS spectra obtained in the AGN STORM project. The top panel shows the continuum variations and the lower panels show the light curves for Ly α, Si IV λ1400, C IV λ1549, and He II λ1640. From De Rosa et al. (2015).

Equally disturbing was the fact that the UV resonance lines were strongly absorbed (Figures 6 and 7). Recall that one criterion for target selection was weak or absent absorption in the emission lines. While narrow absorption features had previously been detected in NGC 5548, a combined XMM/HST campaign the previous year (Kaastra et al. 2014) had shown strong and variable broad absorption for the first time (Figure 8). The broad absorption weakened toward the end of the 2013 campaign, and all we could do at that point was hope that trend would continue into 2014. Our first spectra in early 2014 showed, however, that variable broad absorption was still present, though weaker than in 2013. This added another layer of complexity to the analysis.

CIVmean

Figure 6. The top panel shows the mean C IV profile during the AGN STORM program. Note the strong narrow and broad absorption features shortward of line center. The middle panel shows the rms residual profile, which isolates the variable part of the emission line. The bottom panel shows the mean reverberation lag in each velocity bin. In all cases, black is for the entire campaign, gray is for the first half, and orange is for the second half. From De Rosa et al. (2015).

LyaMean

Figure 7. The mean, rms, and reverberation lag profiles as in Figure 6, but for Ly α. The broad (damped) absorption shortward of the broad emission line is due to interstellar absorption in our own Galaxy and the narrow emission superposed on it is geocoronal Ly α emission.

 

CIVprofiles

Figure 8. Historical C IV profiles for NGC 5548.  The cyan profile from 1993 shows no broad absorption. The black profile is from AGN STORM and shows weak broad absorption compared to what was observed a year earlier (green, red, and blue profiles) by Kaastra et al. (2014). Figure courtesy of G. Kriss.

The data product that we most desired is a projection of the BLR kinematics and velocity field into the two observable parameters, Doppler velocity and time delay (Figures 9 and 10). This “velocity–delay map” is essentially the observed response of the emission lines to an instantaneous (“delta function”) outburst by the continuum source. Recovery of the velocity–delay maps for the various emission lines was complicated by the non-linear emission-line response during much of the campaign and by the strong broad absorption features. Nevertheless, we were able to recover velocity-delay maps for the three strongest lines, Ly α, C IV, and H β. All of them show the signature of an inclined disk with a fairly sharp outer boundary, though the response of the far side of the disk is surprisingly weak. The weak response of the far side suggests that fewer ionizing photons are reaching the far side than the near side: this might also explain the surprisingly small lags (since mostly we’re seeing the response of the near side) and the anomalously small equivalent widths of the lines (i.e., the emission lines are weak compared to the continuum).

ColorUV_VDM

Figure 9. Preliminary UV velocity-delay map based on AGN STORM data. The upper left panel is the velocity-delay map for Ly α + NV, Si IV, C IV, and He II; the orange dashed ellipses trace the faint disk signature for a mass of 6 × 107 solar masses at an inclination of 50°. The lower left panel shows the variable part of the line profile: the average for all time delays is in black, and the averages for binned lags of 0-5 days, 5-10 days, 10-15 days, and 15-20 days is shown in blue, green, orange, and red, respectively.  The upper right panel shows the “delay-map” (i.e., integrated over all velocities) for Ly α, Si IV, C IV, and He II in red, orange, green, and blue, respectively, and in black for the entire spectrum. Figure courtesy of K. Horne.

ColorOPT_VDM

Figure 10. Preliminary velocity-delay map for He II λ4686 and Hb λ4861 from AGN STORM optical spectra. Panels are as in Figure 9. In the upper right panel, He II is shown in blue, H β is in red, and the core of H β is in orange. Based on data from Pei et al. (2016). Figure courtesy of K. Horne.

The latter two points are things we know because NGC 5548 is such a well-studied AGN: there have been almost 20 reverberation campaigns – mostly ground-based optical abut two UV campaigns, one involving HST – that included this source. NGC 5548 is essentially a “control” object in the sense that while some properties of this AGN are expected to change over timescales long compared to reverberation (luminosity, BLR radius), others are not (black hole mass, inclination) – if reverberation-mapping is working as it should, we should get the same mass every time. Because we have this wealth of archival data, we could tell that something odd was happening in NGC 5548 rather than erroneously conclude that NGC 5548 is simply an odd source.

So what exactly is going on with NGC 5548? A couple things. First, we find that the narrow absorption lines are varying. This provides a strong diagnostic of the unobservable ionizing continuum as each line responds to the continuum at the ionization energy of the relevant ion. As the continuum at the ionizing energy increases, the ionization level increases so the line becomes weaker. For example, singly-ionized silicon has an ionization potential of 16.3 eV, so when the continuum at 16.3 eV (~760 Å) increases, more of the silicon becomes doubly ionized and the equivalent width of Si II λ1526, which arises from singly ionized silicon, decreases. However, this pattern is broken after the first 60 days of the campaign. The lower-ionization absorption lines are still following the pattern, but the higher ionization lines are not responding anymore.  While the continuum that drives the variability of the broad Balmer emission lines (just shortward of 912 Å) is still varying with the observable continuum (~1150 Å), the higher energy continuum (at wavelengths shorter than, say, ~500 Å) is not. So at least part of the reason the emission line response is changing is because the shape of the ionizing spectrum has changed. As an aside, we were also able to determine where the narrow absorption arises, based on the “recombination time”, i.e., the timescale to return to the lower ionization state when the continuum becomes faint again. The narrow absorption arises ~1 – 3 pc from the black hole, in the same gas that produces the [O III] λλ4959, 5007 emission lines seen prominently in the optical spectrum (Peterson et al. 2013).

Second, the broad absorption is also present, but weaker than it was in 2013 (Figure 8). While we don’t know where the broad absorption arises, it’s likely that it occurs on the BLR scale. It also stands to reason that if there are absorbers along our line of sight that there are absorbers along other sight lines as well. We can speculate that, in fact, there is very heavy absorption between the accretion disk and the far side of the BLR, which would account for the weakness of the emission lines, the unexpectedly short lags, and the faint response of the far side seen in the velocity–delay maps.

I’ve focused this discussion almost entirely on the BLR because that was the original goal of the experiment. Our preliminary analysis confirms the black hole masses that we’ve estimated from the simpler sort of reverberation analysis described earlier. We’ve learned that the BLR in NGC 5548 is at least in part a disk seen at moderate inclination, and we’ve concluded that there is a lot of absorption on different scales – anticipation of the importance of strong variable absorption was the omission in our original simulations, simply because we didn’t expect it to be a factor. The presence of absorbing gas has complicated the analysis, revealing a richer, more complex environment than we’d anticipated. While we think we have the basic ingredients now, we’ve still got a lot of detailed modeling to do. So far, the AGN STORM project has produced 6 papers (see references below) and several more are in preparation.

Some of the more important things we found had to do with the accretion disk itself, and I’ll have more to say about that another time.

References:

  • Bentz, M.C., et al. 2013, ApJ, 767: 149
  • De Rosa, G., et al, 2015, ApJ, 806: 128 (STORM Paper I)
  • Edelson, R., et al. 2015, ApJ, 806: 129 (STORM Paper II)
  • Fausnaugh, M.M., et al. 2016, ApJ, 821: 56 (STORM Paper III)
  • Goad, M., et al. 2016, ApJ, (STORM Paper IV)
  • Grier, C.J., et al. 2013, ApJ, 773: 90
  • Kaastra, J., et al. 2014, Science, 345, 64
  • Onken, C.A., & Peterson, B.M. 2002, ApJ, 572, 746
  • Pei, L., et al. 2016, submitted to ApJ (STORM Paper V)
  • Peterson, B.M. 1993 PASP, 105, 247
  • Peterson, B.M., & Wandel, A. 2000, ApJ, 540, L13
  • Peterson, B.M., et al. 2013, ApJ, 779: 109
  • Starkey, D., et al. 2016, ApJ, in press (arXiv:1611.06051) (STORM Paper VI)
  • Urry, C.M., & Padovani, P. 1995, PASP, 107, 803
Nov 092016
 

By Harry Ferguson (STScI)

In 2009, there was a call for ambitious proposals to use Hubble for projects that were beyond the scope of what a typical time allocation could accomplish. Hubble time is usually doled out in “orbits.” One orbit of Hubble takes about 90 minutes yielding 45 minutes to an hour of observing time (because the Earth typically blocks a portion of the sky from view). A typical proposal will be for a few orbits of observing time. In this particular call, proposers were asked to consider projects needing at least 450 orbits.

Two teams responded to this call with very ambitious proposals to observe representative patches of sky to search for the most distant galaxies, study the assembly of galaxies over cosmic time, trace the formation of black holes in the centers of galaxies, and study distant supernovae. The proposals were similar in many respects, and the time allocation committee recommended merging the two teams. Thus the CANDELS collaboration was formed, with participation of nearly 100 astronomers with diverse backgrounds and interest. The time allocation was 902 orbits, which is the largest in the history of the Hubble telescope.

Why did so many astronomers – on the proposal teams and the time allocation committee – think this kind of observation was important? And what have the observations revealed?

The answer to the first question goes back to a fundamental assumption of cosmology – that the universe is basically the same in all directions. Obviously this assumption breaks down on small scales (otherwise there wouldn’t be planets, stars, and galaxies), but it appears generally true when averaging over scales larger than about 10 million light years. The Hubble observations allow us measure the past: to observe galaxies and supernovae that are so distant that their light has taken billions of years to reach us. Any single Hubble image will have both nearby galaxies and galaxies for which the light-travel time more than 13 billion years (the universe itself is 13.8 billion years old).  To get a reasonably fair census of the distant universe, we need to point at places that are out of the plane of the Milky Way galaxy. We need to take fairly long exposures to collect enough photons. We should observe these same patches at other wavelengths (from x-ray to radio). All else being equal, we should divide the total area into several patches that are disjoint on the sky to reduce systematic errors due to foreground dust or large-scale cosmic structures. Hence the CANDELS survey: a public Hubble survey of the most-studied patches of sky, coordinated with observations from other major observatories.

The CANDELS observations were completed in 2013 and so far there have been over 200 papers published using the data. It’s possible to give only at taste of the scientific results in this blog article. There are many more summaries on CANDELS blog site.

Cosmic Dawn

Ever since the installation of the WFC3 camera on Hubble in 2009, the race has been on to identify the most distant galaxies. It was unclear at the outset which strategy would be most successful: taking very deep exposures over a tiny area, shorter exposures over a wider area, or pointing at galaxy clusters and using gravitational lensing to magnify galaxies in the background. Over the course of several years, Hubble has done all three, and the current record holders are in one of the CANDELS fields and in the background of a cluster of galaxies. Follow-up observations of a bright candidate in the CANDELS GOODS-North field suggest that it is at a redshift z=11.1, about 400 million years after the Big Bang (Oesch et al. 2016).

Aside from the lure of seeing the most distant galaxies, there is much to learn from studying statistical properties enabled by the large survey – with samples now approaching 1000 galaxies within the first billion years and 10000 within the first two billion. (Prior to the installation of WFC3 and the CANDELS survey, there were only a handful of good candidates identified at these early times.) There appear to be enough of these very young galaxies to explain the rather rapid “re-ionization” of the universe. About one billion years after the big bang there was a huge injection of energy that stripped 99.99% of the electrons away from the protons in the hydrogen between galaxies. The observations show that there was enough energy in young galaxies to explain this; although we are not yet certain that enough of the photons at just the right energy to ionize hydrogen can escape, because the gas within the individual galaxies might absorb most of it. Galaxies in the first billion years have bluer colors than their counterparts at later epochs – probably because they have not yet had enough time to build up the heavy elements needed to form large amounts of dust and to lower the temperatures of young stars. Nevertheless, in spite of being bluer, few if any of the galaxies show the very blue signature expected of galaxies forming their first generation of stars.  Comparing the evolving numbers and stellar masses of galaxies to the theoretically-predicted numbers of gravitationally-bound dark-matter “halos,” leads to the conclusion that the star-formation rates are almost – but not entirely – governed by the somewhat clumpy inflow of gas as the gravitational pull of the newly formed dark-matter halos draws in more gas from the surrounding intergalactic medium.

fig1

Figure 1: The left panel shows the number of very distant galaxies identified by the CANDELS survey (red) and deeper surveys (blue) since the WFC3 camera was installed on Hubble. The right panel shows the estimate of the “cosmic star-formation rate” – the number of stars formed per year in a fixed volume of the universe – as a function of time since the Big Bang.

The addition of infrared wavelengths – both from Hubble and from the Spitzer and Herschel observatories at longer wavelengths – has been essential for searching for galaxies that are either full of dust or shutting off their star formation. Such galaxies are red enough that they are difficult to pinpoint as distant-galaxy candidates in the Hubble images alone or entirely invisible in the Hubble images. Massive dusty or “quenched” galaxies are expected to be extremely rare in the early universe because there simply hasn’t been time for them to form. Nevertheless, there are dozens of interesting candidates found in the CANDELS fields when inspecting the infrared images. These will high-priority targets for spectroscopy with JWST and ALMA, which will be able to confirm their distances.

Cosmic High Noon

The overall cosmic rate of star formation peaked at a redshift z ≈ 2, when the universe was about 3-4 billion years old. The CANDELS observations provided the first large samples of galaxies with high-resolution images spanning wavelengths from the rest-frame ultraviolet to the optical. The longer wavelength data from Spitzer helps to pin down the total stellar masses of the galaxies, by providing extra sensitivity to some of the oldest, reddest stars. Using samples of tens of thousands of galaxies, we are able to assess the successes and failures of our current theoretical understanding of galaxy evolution, and provide some clues to guide future developments. The observations tell us that something is “quenching” the star-formation in massive galaxies as early as 2-3 billion years after the Big Bang. These quenched galaxies emerge as very compact “red nuggets,” which must grow substantially in size and over the next ten or so billion years, increasing in mass mostly by merging with neighboring galaxies rather than forming new stars in situ. The compact star-forming progenitors of these galaxies (blue nuggets) appear to be present in sufficient numbers to account for the red nuggets, but we do not yet entirely know how or why star-formation is shutting down. The blue nuggets have a somewhat higher incidence of active nuclei: central black holes that are accreting gas at a high rate, and perhaps heating the gas that would otherwise cool to form stars. Quenched galaxies have higher central densities of stars than most star-forming galaxies, so the thought is that when sufficiently large amounts of gas collect in the center, this triggers a burst of star formation and perhaps also feeds an active nucleus. The energy feedback from the star formation and the nucleus are sufficient to shut off subsequent star formation. High-resolution computer simulations of forming galaxies suggest that the trigger for this gas funneling is a mix of gravitational instabilities within a star-forming disk of gas and mergers with surrounding galaxies. When dust is included in these simulations, they look remarkably like the galaxies we see, but differ enough in their statistical properties (for example their colors) that we know that some aspects of the physical models are not quite correct.

fig2

Figure 2: Computer simulations vs. observations. The bottom panels show some of the highest-resolution hydrodynamical simulations of galaxies that have yet been constructed on supercomputers. The images in the middle show the same galaxies viewed from two different camera directions and placed at a large distance from the telescope so that our view matches what we might see from Hubble. The top panels show galaxies selected from the CANDELS survey. Qualitatively, the computer simulations doing a very good job of matching what we see in deep observations.

Towards the present day

CANDELS has provided us with large enough samples of galaxies that it is possible to try to find examples of what the Milky Way galaxy might have looked like in the past. We can attempt to match progenitors to descendants in the overall population of galaxies by isolating galaxies that are at about the same rank in the overall ranking of galaxies by stellar mass (from biggest to smallest). Figure 3 shows a visual summary of the results of this kind of effort – in what might be considered to be a family tree of the Milky Way. The progenitors are smaller, bluer, and generally do not have the familiar spiral-plus-bulge structure that we see in present-day galaxies. The same study provides a way to infer the amount of cold gas that ought to be present as fuel for star formation, and these predictions are being tested with ongoing observations from the ALMA observatory.

fig3

Figure 3: Examples of progenitors of a Milky-Way-mass galaxy taken from the CANDELS survey. Redshift and time (in billions of years since the big bang) run along the horizontal axis. The figure has been divided into three panels for convenience; the earliest times are at the bottom and the latest times are at the top. The galaxies are shown to the same physical scale and the colors are a fair representation of their rest-frame colors. The position along the vertical direction illustrates how blue (or equivalently, hot) the galaxy is, with red toward the top and blue toward the bottom.

References:

  • Grogin, N. et al., 2011, ApJS, 197, 35.
  • Koekemoer, A., et al., 2011, ApJS, 197, 36.
  • Oesch et al. 2016, ApJ, 819, 129.
  • Finkelstein et al. 2015, ApJ, 814, 95; 2015, ApJ, 810, 71.
  • Behroozi & Silk, 2015, ApJ, 799, 32.
  • Wang, T., et al., 2016, ApJ, 816, 84.
  • Papovich, C., et al., 2015, ApJ, 803, 26.
  • Spitler, L., et al., 2014, ApJ, 787, 36.
  • Nayyeri, H., 2014, 794, 68.

 

 

Oct 022016
 

By Ori Fox (STScI)

Core-collapse supernovae (SNe) are the explosions of massive stars (>8 Msun) that reach the end of their lifetime. No longer able to radiatively support themselves by nuclear core burning after depleting their fuel, the stars collapse and release gravitational energy that rips apart the star entirely. The resulting explosions exhibit differences in their spectra and light curves that can be grouped into one of several subclasses.

From a theoretical perspective, these differences once seemed straightforward. Single star models indicate that the strength of a stellar wind increases as a function of the star’s initial mass and metallicity (Heger et al. 2003). In turn, stronger winds can remove more of a star’s outer envelope, resulting in the distribution of observed SN subclasses. Accordingly, a Type II SN has hydrogen in the spectrum, suggesting a lower mass (~8-25 Msun) red supergiant (RSG) progenitor. In contrast, a Type Ic SN has neither hydrogen nor helium in its spectrum, suggesting a higher mass (>40 Msun) progenitor.

Direct images of the individual stars before they explode provide the strongest observational constraints, but are difficult to obtain because they require deep, high-resolution, multi-color, pre-explosion imaging. Before the Hubble Space Telescope (HST) was launched, one of the few progenitors directly observed was the progenitor to SN 1987A in the Large Magellanic Cloud (LMC) at just 0.05 Mpc. The Cerro Tololo Inter-American 4-meter telescope obtained several images of the LMC between 1974 and 1983 (Walborn et al. 1987). The direct observations showed a progenitor consistent with a blue supergiant, which contradicted most stellar evolution theory and set the field on the course it is still on today.

AAT 50. The field of supernova 1987A, before and after (March, 1

Figure 1: The famous SN 1987 both before (right) and during (left) the explosion. The exploding star, named Sanduleak -69deg 202, was a blue supergiant.

Ground-based imaging is only sufficient for detecting progenitors out to 1-2 Mpc. HST extended this range out to about 20 Mpc. Cost and time, however, prohibit HST from obtaining pre-explosion imaging of the thousands of galaxies within this volume. Instead, these data must be obtained serendipitously via other science programs. The number of galaxies with pre-explosion imaging has grown steadily since HST was launched in 1990. With only a few SNe within this volume each year, a statistically significant sample of SNe with corresponding HST pre-explosion images was not accumulated until the mid-2000s (Smartt 2009). As predicted by the theory, Type II SNe had RSG progenitors. The most mystifying result, however, was the fact that the Type I SNe (i.e., those without hydrogen) had no confirmed massive (and thereby luminous) star progenitors, even to very deep limits.

The solution to this mystery is still not solved but may involve binary star progenitor systems, which are now known to account for ~75% of massive star systems (Sana et al. 2012). As opposed to single stars systems, where stars lose their envelopes in their winds, a binary companion star can remove the outer envelope of the primary via tidal stripping. This process allows for increased mass-loss from lower mass, less luminous stars that may evade detection in pre-explosion imaging. This scenario has long been preferred for a specific subclass referred to as the Type IIb (i.e., a hybrid of the Type II and Ib subclass) since most, but not all, of the outer Hydrogen envelope is removed.

fig2

Figure 2: This illustration shows the key steps in the evolution of a Type IIb supernova. Panel 1: Two very hot stars orbit about each other in a binary system. Panel 2: The slightly more massive member of the pair evolves into a bloated red giant and spills the hydrogen in its outer envelope onto the companion star. Panel 3: The more massive star explodes as a supernova. Panel 4: The companion star survives the explosion. Because it has locked up most of the hydrogen in the system, it is a larger and hotter star than when it was born. The fireball of the supernova fades. (Credit: NASA, ESA, and A. Feild (STScI))

While the primary (i.e., exploding) star in the binary system may be too faint to be detected in the pre explosion imaging, the companion star may be bright enough to test the binary hypothesis. As the primary star loses mass, the companion will gain mass and become more luminous and blue. Despite these changes, detecting the companion star in a binary system is not straightforward. The stellar spectrum of the companion will peak towards the ultraviolet (UV). Since most serendipitous pre-explosion imaging does not consist of UV observations, a UV search for the companion must occur only once the SN has faded. To date, a companion star has only been observed in a single instance for the Type IIb SN 1993J in M81 at just 3.5 Mpc (Maund et al. 2004, Fox et al. 2014).

fig3

Figure 3: This is an artist’s rendition of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a binary system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. HST identified the UV glow of the surviving companion embedded in the fading glow of the supernova. (Credit: NASA, ESA, and G. Bacon (STScI))

The future of progenitor detections lies with HST and the James Webb Space Telescope (JWST). HST offers UV-sensitive instruments that allow us to search for the binary companions to these stripped envelope SNe. JWST will offer more than 7 times the light collecting area than HST. While JWST lacks UV capabilities necessary for companion star searches, it will increase the sensitivity to primary stars that peak at redder wavelengths. This increased sensitivity will not only provide stronger constraints on the progenitors, but it will allow progenitor searches to extend out to larger distances, thereby increasing the search volume and sample size. These new progenitors discoveries will have direct implications on our understanding of star formation, stellar evolution models, and mass loss processes.

References

  • Heger, A., et al. 2003, ApJ, 591, 288
  • Walborn, N. R., et al. 1987, ApJ, 321, L41
  • Smartt, S. 2009, ARA&A, 47, 63
  • Smith, N., et al. 2011, MNRAS, 412, 1522
  • Sana, H., et al. 2012, Science, 337, 444
  • Maund, J., et al. 2004, Nature, 427, 129
  • Fox, O. D., et al. 2014, ApJ, 790, 17
Sep 072016
 

By Linda Smith, European Space Agency/STScI

The upper mass limit for stars is not known with any certainty. The best means of observationally determining this parameter is to study the content of young, massive star clusters. The clusters need to be young (< 2 Myr) because of the short lifetime of the most massive stars, and they need to be massive enough (> 105 Msun) to sample the full extent of the initial mass function (IMF).

In 2005, Don Figer derived an upper mass limit for stars of 150 Msunusing the Arches cluster near the center of our Galaxy. However, the Arches cluster is too old at 4 Myr to sample the true initial mass function (IMF) because stars more massive than 150 Msun will have already exploded.

In a star-forming region, the most massive stars will dominate the ionization and stellar wind feedback for the first few million years. The amount of feedback will be severely underestimated from models if the upper stellar mass cut-off of the IMF is too low. Most stellar population synthesis models, which are used to infer the stellar content and feedback of unresolved star-forming regions, adopt cut-off values of 100 or 120 Msun (e.g. Starburst99; Leitherer et al. 1999).

The massive star cluster R136 in the 30 Doradus region of the Large Magellanic Cloud (LMC) is the only nearby resolved cluster which is young and massive enough to measure the IMF, and thus empirically determine the stellar upper mass cutoff. In a series of papers, Crowther et al. (2010, 2016) used far-ultraviolet (FUV) spectra obtained with spectrographs on HST to determine the masses of the massive stars using modeling techniques. They found that the R136 cluster is only 1.5 ± 0.5 Myr old and contains eight stars more massive than 100 Msun with the most massive star (called R136a1) having a current mass of 315±50 Msun. The four most massive stars account for one-quarter of the total ionizing flux from the star cluster. These very massive stars (VMS, M > 100 Msun) have very dense, optically thick winds and their emission-line spectra resemble Wolf-Rayet (W-R) stars but they are hydrogen-rich (see the recent blog article by Tony Marston on W-R stars).

Beyond R136, the best means of finding VMS is to look for their spectral signatures in the integrated FUV light of young massive star clusters in star-forming galaxies. NGC 5253 is a blue compact galaxy with a young central starburst at a distance of 3.15 Mpc. The galaxy is part of the Legacy Extragalactic UV Survey (LEGUS; see https://legus.stsci.edu), a Cycle 21 HST large program. In a paper by Calzetti et al. (2015), we combined the LEGUS imaging with HST archive images and derived the masses and ages of the bright, young star cluster population of NGC 5253 using 13 band photometry. In Fig. 1, the LEGUS image of NGC 5253 is shown. Fig 2 shows the two clusters (numbered #5 and #11) at the center of the galaxy. Cluster #5 coincides with the peak of the Hα emission in the galaxy and cluster #11 with a massive ultracompact H II region.

fig1

Figure 1: Three color composite of the central 300 x 250 pc of NGC 5253 from Calzetti et al. (2015). The 11 brightest clusters are identified and numbered.

Print

Figure 2: Detailed view of the two nuclear clusters #5 and #11 shown in Fig. 1, which are separated by a projected distance of 5 pc.

We found that the two nuclear clusters have ages of only 1±1 Myr and masses of 7.5 x 104 and 2.5 x 105 Msun.   Interestingly, the very young ages we derive contradict the age of 3-5 Myr, inferred from the presence of W-R emission-line features in the optical spectrum of cluster #5. Could these W-R features arise from very massive stars instead? To answer this, we examined archival FUV STIS and FOS spectra and optical spectra from the Very Large Telescope (VLT) of cluster #5 to search for the spectral features of VMS. This study is described in Smith et al. (2016).

The FUV spectra show that cluster #5 does indeed have the signature of very massive stars rather than much older classical W-R stars. The FUV spectrum of cluster #5 is shown in Fig. 3 and compared to the integrated FUV STIS spectrum of R136a (Crowther et al. 2016), which has been scaled to the distance of NGC 5253. The similarity between the two spectra is striking. The crucial VMS spectral features are the presence of blue-shifted O V λ1371 wind absorption, broad He II λ1640 emission, and the absence of a Si IV λ1400 P Cygni profile (expected in W-R stars). Crowther et al. (2016) find that 95% of the broad He II emission shown in the R136a spectrum in Fig. 3 originates solely from VMS. Thus the presence of this feature in emission together with the O V wind absorption indicates a very young age (< 2 Myr) and a mass function that extends well beyond 100 Msun.

fig3

Figure 3: The HST FUV spectrum of NGC 5253 cluster #5 compared to the integrated HST/STIS spectrum of R136a (Crowther et al. 2016). The R136a spectrum has been scaled to the distance of NGC 5253. The flux is in units of 1015  erg s-1 cm-2 Å-1

The presence of very massive stars in cluster #5 (and also probably cluster #11) can also explain the very high observed ionizing flux. Previous studies have assumed an age of 3-5 Myr and find that standard stellar population synthesis codes significantly under-predict the ionizing flux. For an age of 1 Myr, the predicted ionizing flux is still too low by a factor of 2 for a standard IMF with an upper mass cut-off of 100 Msun. However, only 12 VMS with M > 150 Msunare needed to make up the deficit.

The UV spectrum of cluster #5 shows many similarities with the rest frame spectra of metal-poor, high-redshift galaxies with broad He II emission and strong  O III] and C III] nebular emission lines. If VMS exist in young star-forming regions at high redshift, their presence should be revealed in the UV rest-frame spectra to be obtained by the James Webb Space Telescope. For all studies near and far, it is crucial to extend stellar population synthesis models into the VMS regime to correctly model the spectra, and account for the radiative and stellar wind feedback, which will be dominated by VMS for the first 1–3 Myr in massive star-forming regions.

References

  • Calzetti, D. et al., 2015, ApJ, 811, 75
  • Crowther, P.A. et al., 2010, MNRAS, 408, 731
  • Crowther, P.A. et al., 2016, MNRAS, 458, 624
  • Figer, D.F., 2005, Nature, 434, 192
  • Leitherer, C. et al., 1999, ApJS, 123, 3
  • Smith, L.J. et al., 2016, ApJ, 823:38
Aug 012016
 

By Anthony Marston, European Space Agency/STScI

What are Wolf-Rayet stars?

Wolf-Rayet (WR) stars are believed to be evolved massive stars that initially started their lives with masses of  > 20 Msun. With such high masses, they evolve very quickly to the WR state from high-mass hydrogen burning O stars in 1-2Myr. Currently, evidence suggests that the majority of WR stars are either in or affected by having been in relative close binaries, that can affect their evolution.

There are several evolutionary paths and theories as to the evolutionary direction of WR stars. It is postulated that different evolutionary paths exist depending on the how much initial mass exists above 20 Msun, as well as whether they are single or binary stars. For most WR stars, a mass-loss phase of a few tens of thousands of years probably occurs. Evidence for this is seen in the nitrogen-enriched ejecta nebulae that are seen around many WR stars. Ejecta are believed to be associated with a slow wind phase following the fast wind of the main sequence O star phase. Once evolved to a WR star there is again a fast wind phase which can quickly interact with a slow moving ejecta nebula. But not all WR stars are seen to have ejecta.

There are three subtypes of WR stars: WN subtypes show prominent nitrogen emission lines in their spectra, WC subtypes show prominent carbon emission lines, and WO subtypes show strong high excitation oxygen emission lines. These form an apparent evolutionary sequence with the spectra showing the products of Hydrogen burning for WN stars, Helium burning for WC star spectra and higher level burnings for WO stars. WO subtype stars in the Galaxy are very rare (three are known) and probably represent a final WR evolutionary phase before becoming a supernova (probably of type Ib).

How common are they and how are they distributed in the Galaxy?

By the end of 2000 just over 200 WR stars were known in the Galaxy. Most of these were discovered in studies of clusters or serendipitously. They were shown to follow the spiral pattern of the Galaxy and showed a distribution that mimicked other Galactic star formation site indicators. Indeed, WR stars have in various ways been used as markers of very recent high-mass star formation and star formation bursts since they only live a few million years.

In his review of WR stars, Karel van der Hucht (2001) indicated that the likely population of WR stars in the Galaxy could be several thousand rather than the few hundred known. This was in part due to obvious observational restrictions, such as unseen populations on the opposite side of the Galaxy. With the advent of sensitive infrared detectors the possibility of finding distant and/or obscured WR stars became more realistic. Two approaches have been developed for finding Galactic WR stars in recent years.

The “narrow-band” approach (Shara et al. 2009) uses narrow-band images centered on strong emission lines seen in WR stars (e.g. HeII) and subtracts from them narrow-band images covering only the continuum (or broad-band infrared images). The candidates revealed are followed up with infrared and/or optical spectroscopy to confirm their nature.

The “broad-band” approach is based on the near- to mid-infrared colors which are peculiar to stars with strong winds – and in particular WR stars. Figure 1 shows how the free-free emission from the fast WR wind of the nearby WR star WR11 (g Vel) has a distinct spectral index which is substantially different from stellar photospheres leading to WR stars being overabundant in certain areas of broadband infrared (2MASS, Spitzer/IRAC, WISE) point source color-color space (see Figure 2). Even though the this approach is slightly more prone to confusion issues than the “narrow-band” method, it has a couple of advantages over the latter: the potential for picking up weak-lined WR stars or ones where lines are diluted relative to the continuum due to a massive companion or local hot dust emission. It also uses already existing infrared point source catalogs (e.g. the GLIMPSE catalog of source within | b < 1 | in the Galactic plane). As of July 2016, the total number of known Galactic WR stars is 634 (http://www.pacrowther.staff.shef.ac.uk/WRcat/).

figure1Figure 1: Spectral energy distribution of g Velorum (Williams et al. 1990) showing the excess free-free emission from the stellar wind in the infrared wavelengths as compared to photospheric emission (straight black line). The GLIMPSE catalog which used Spitzer/IRAC data will show WR stars with colors distinct from the vast majority of stars.

Our group, with core members Schuyler Van Dyk (Caltech), Pat Morris (Caltech), Jon Mauerhan (UC Berkeley) and Anthony Marston (ESA-STScI), uses the broad-band method. It was first developed by Marston in 2004 to identify candidates in ESO/SOFI infrared spectroscopic observations and it helped identify 60 new WR stars by Mauerhan et al (2011). The color selection uses data from the GLIMPSE catalog, consisting of several 10’s of million sources detected in the Galactic plane using broadband Spitzer/IRAC 3.4 – 8 mm measurements combined with band-merged flux data from 2MASS (broadband near-infrared JHKs). In certain studies, X-ray emission sources and, more lately, WISE point source colors have been used in identifying WR candidates.  Spectroscopic follow-up has concentrated on obtaining K-band spectra, as WR stars are typically identified by strong HeII emission lines such as the 2.189mm line. For the less reddened candidates, optical spectroscopic follow-up has also been possible.

Historically we have found that 10-15% of candidates turn out to be bona fide WR, stars while~ 85% of all candidates are emission-line stars, most often Be stars. Small numbers of O/Of stars B[e] supergiants and stars exhibiting infrared CO bandhead absorption lines have been picked up where combinations of photosphere, dust emission and free-free emission has brought objects into our infrared color space. Improvements to our color-space selection have increased the success rate of WR detections out of the candidates, notably for more reddened/distant objects where the candidate confirmation rate can go as high as 25% (see Figure 2). We are currently looking into a machine-learning capability for assessing the likelihood of an object being a WR star from color-space criteria. The ultimate goal is to be able make accurate predictions of WR numbers of different subtypes in the Galaxy.

figure2

Figure 2: Infrared color-color plots showing the candidate objects observed by Mauerhan et al (2011). The green symbols were newly discovered WN subtypes and red WC subtype stars. Blue points represent candidates that follow up spectroscopy showed were not WR stars. Grey shaded areas indicate the part of the color-color plots where 50% or more candidates were found to be WR stars.

What have WR stars taught us about high-mass star formation?

The number ratios of WR to O stars and Red Supergiant (RSG) or Luminous Blue Variable stars are key values for constraining stellar evolution theories of massive star evolution. In a simple way, ratios provide an indication of relative timescales for lifetimes. Another indication of timescales, and possibly different evolutionary links between subtypes, mass-loss phases and initial stellar masses, is the number distribution of WR subtypes, both WN and WC (plus the rare WO stars).

The distribution of WR stars (studied e.g. using the Spitzer’s GLIMPSE survey across the Galactic plane) marks star formation sites across the Galaxy and indicate likely sites of future supernovae. However, it has become clear over time that many WR stars, that are no more than a few Myr in age, appear to be found well away from the centers of star-forming clusters in the Galaxy. A projection of most of the known WR stars with secure distance shows that some WR stars also appear to be more than 100 pc above/below the plane of the Galaxy (Rosslowe & Crowther, 2015). A possible explanation of why some WR stars appear to be located away from their birth site could be the presence of fast transverse motions caused by expulsion from their cluster formation site. Another possibility could be that these stars were part of small clusters but, being much more luminous than other cluster members, they appear to be isolated. But in recent years, in the study of star-forming regions like the Cygnus OB2 cluster, we have learned of an unexpected third possible explanation.

Various studies suggest that the Cygnus OB2 cluster, being 1 Myr of age, has not evolved significantly from its original distribution. This means that the massive stars, and WR stars in particular, are near the sites where they were born. However, none of the WR stars are in the massive star cluster at the center of the Cyg OB2 association (see Figure 3), and not only that, none show evidence of bow shocks from significant transverse velocities, suggesting these stars were born in situ. We now know, from studies with Herschel, that filaments of high-density gas can extend through star-forming regions with “strings” of star-forming cores being found along them. And in fact, filaments pervade the Cyg OB2 area leading to the possibility of forming high-mass stars outside of major stellar clusters, possibly instigated to form high-mass stars through a triggering event, such as expanding gas shell collisions.

fig3

Figure 3: The Cygnus OB2 association as seen by Herschel PACS/SPIRE (colored background from Schneider et al, 2016). WR stars and Luminous Blue Variable stars (likely precursors of WR stars in stellar evolution) are found well away from the major cluster of O stars shown as white points a bit to the right of center of the field (Comeron et al 2008, Wright et al 2015).

There are therefore two possible scenarios:

  • WR stars are born in situ and away from stellar clusters (but likely within stellar associations) – which means distributed high-mass star formation occurs for some of the most massive stars probably from filaments.
  • WR stars are kicked out of stellar clusters due to dynamics of the early cluster of stars or through binary/supernova interactions, apparently affecting a large fraction of the very massive stars in the stellar cluster.

As we have seen, the study of Wolf Rayet stars has shed new light on unexpected physical processes associated to high-mass star formation. In the future, we will advance their study by: (1) Using machine-learning and improved color-selection techniques to find new WR stars and assess their distributions in the Galaxy, including in high-mass star-forming regions. (2) Pinning down number ratios of WR subtypes and other massive star types. (3) Using the GAIA catalog to get proper motions of WR stars to identify runaway stars. (4) Searching for bow shocks, in particular in the mid-infrared with WISE, as it has been found that they are particularly prominent at IR wavelengths.

 

References:

  • Blaauw,  A.,1993, ASPC, 35, 207
  • Comeron et al, 2008, A&A, 486, 453
  • Crowther et al, 2006, MNRAS, 372, 1407
  • van der Hucht, K., 2001, New AR, 45, 135
  • Mauerhan, J., et al, 2011, AJ, 142, 40
  • Rosslowe, C., & Crowther, P., 2015, MNRAS, 447, 2322
  • Schneider, N., et al, 2016, A&A, 591, A40
  • Shara et al, 2009, AJ, 138, 402
  • Williams, P., et al, 1990, MNRAS, 244, 101
  • Wright, N., et al, 2015, MNRAS, 449, 741

 

Mar 162016
 

By Jason Tumlinson, Astronomer at the Space Telescope Science Institute

What are the most amazing astronomical discoveries in our lifetime? The realization that the Universe is dominated by dark matter? The finding that Hubble’s expanding Universe is actually accelerating? That planets orbiting normal stars are common? To me, the most amazing discovery is one that has yet to be made, but which many astronomers are spending their careers to pursue: whether or not life as we know it has arisen beyond the Earth, even beyond our own Solar System. This question was asked by the ancients of many cultures, and has preoccupied some of the deepest thinkers up to the present day. We astronomers working now are privileged to live at a time when we can foresee, and personally work toward, the day when this question may be answered.

Talk to the right kind of biologist, and you’ll find that “origins of life” research has become a respectable branch of their field, in a multidisciplinary brew of molecular and cell biology, biochemistry, genomics, and even quantum physics. Researchers in their labs have created simple genomes from scratch, synthesized self-organizing membranes to hold them, and replicated many possible variants on the primordial chemical conditions where life on Earth may have originated. Yet there is one ultimate experiment that no Earth-bound lab can ever hope to perform: has Nature replicated her experiment on Earth by giving rise to life elsewhere? This is a problem for the astronomers.

How will we do it? In short, by finding Earth-like planets around nearby stars and remotely sniffing their air. Since the discovery of exoplanets 20 years ago, and the first direct measurement of an exoplanet atmosphere in 2002, it has become routine to measure the composition of planetary atmospheres. But detecting direct signs of life on other Earths will be much more challenging than anything we can do today, chiefly because each Earth is lost in the glare of its parent star, shining 10 billion times brighter than the planet itself. If we can achieve suppression of the starlight so that the planet can be seen, we can look for oxygen, ozone, water, and methane – the signs of life.

Astronomers have now started serious efforts to find and look for signs of life with the next generation of space telescopes. The James Webb Space Telescope, launching in 2018, will excel at studying the atmospheres of “SuperEarth” planets (about 1.5-2 times Earth mass) around stars smaller than the Sun. The WFIRST mission that NASA has just begun will improve starlight suppression to within about a factor 10 from that needed to study true Earth analogs around Sun-like stars.

To truly answer the origins of life question, we need to reach statistically significant samples of Earth-like planets around nearby stars. This is a problem for a large space telescope, something still larger than JWST. One such concept was dubbed the “High Definition Space Telescope” (HDST) in a report issued by AURA last year. Another name is LUVOIR, the Large Ultraviolet/Optical/Infrared Surveyor, just now under study by NASA. In either case, a telescope of 10 meters or more in aperture will be necessary to characterize dozens of Earth-like planets and look for signs of life there.

Such an observatory also promises to revolutionize virtually every other area of astrophysics with its high resolution imaging and multiplexed spectroscopy. It should be to the astronomical community in two decades what Hubble is now – the all-purpose eagle eye on the cosmos.

In future posts I’ll expand on these themes and describe the incredible potential of such a telescope, the science behind testing “origins of life” theories with astronomical measurements, and the energizing possibilities of a 10 meter telescope in space. Please come back and see how cool the future can be!

PastedGraphic-2

Figure: Notional design of a High Definition Space Telescope (HDST).

Feb 152016
 

By Andrew Fox, ESA-AURA Astronomer at STScI

Like a superpower that imports gas to satisfy its energy needs, the Milky Way depends on fresh gas supplies to fuel its star formation. Our galaxy converts gas to stars at a rate of about one or two solar masses per year, and has enough gas reserves to continue forming stars at this rate for about two billion years. But two billion years is not that long compared to the life of a Galaxy, so without replenishment of its gas supplies, the star formation would eventually cease.

Fortunately for the Milky Way, there is a reservoir of gas to import, seen in the form of the so-called high-velocity clouds (HVCs), a population of gaseous objects that orbit in the halo of the Galaxy. Although not all HVCs are inflowing, they provide an average inflow rate of about one solar mass of gas per year, close to the star-formation rate. HVCs allow us to study the process of Galactic accretion, the delivery of gas to the Galactic disk where star formation takes place.

One of the best-characterized HVCs is the Smith Cloud, named after Gail Bieger (née Smith), who discovered it via its radio emission in her PhD thesis in 1963. We know how far away the Smith Cloud is (13 kpc), how fast it is moving (300 km/s), how much gas it contains (two million solar masses), and even what its orbit looks like: it came out of the Galactic disk about 70 million years ago, and is due to impact the disk about 27 million years from now. It has a comet-like appearance (see Figure 1) and is fragmenting as it interacts with the surrounding gas in the Galactic halo.

sc-zolt2

Figure 1: The Smith Cloud, as observed in neutral hydrogen 21 cm emission from the Green Bank Telescope, superimposed on an optical image of the Milky Way. The Cloud is ~3×1 kpc in size and is moving toward the Galactic disk. This image is color-coded by the intensity of 21 cm emission. Credit: Saxton/Lockman/Levay/NRAO/AUI/NSF/STScI.

Despite our solid understanding of the Smith Cloud, one key property was (until recently) unknown: its chemical composition. This is a vital clue to its origin, since a cloud containing low levels of heavy elements (in the jargon, low metallicity) likely originates outside the Galaxy, perhaps from the intergalactic medium or from a dwarf galaxy. On the other hand, a cloud originating in the Galaxy should have much higher metallicity, close to the levels measured in the Sun, because heavy elements are forged in the cores of massive stars, so their presence indicates prior star formation has taken place.

We used the Cosmic Origins Spectrograph on the Hubble Space Telescope to determine the Smith Cloud’s metallicity and therefore constrain its origin. By using the technique of spectroscopy, the ultraviolet light from three background active galactic nuclei (AGN) was split into different wavelengths, and the absorption-line signatures caused by sulfur atoms in the Smith Cloud were measured. We also used radio observations from the Green Bank Telescope in West Virginia to measure how much neutral hydrogen exists in each direction. Combining the sulfur and hydrogen measurements in the three sightlines allowed us to measure the metallicity of the Smith Cloud, and we found it to be one-half of the solar value. This experiment is illustrated in Figure 2.

sc-cartoon

Figure 2: Illustration of our experiment to determine the Smith Cloud’s metallicity (courtesy Ann Feild/STScI). Ultraviolet and radio observations of three lines-of-sight through the Cloud toward background active galactic nuclei (AGN) allow us to measure the abundance of sulfur atoms.

One-half solar is too high a metallicity for the Cloud to represent a dwarf-galaxy neighbor of the Milky Way (and besides, the Cloud contains no stars). Yet it is too low to have originated in the disk of the Galaxy near the Sun, where we expect solar metallicity. However, one-half solar matches the abundances in the outer disk of the Milky Way. Indeed, if we trace back the orbit of the Smith Cloud to where it last crossed the disk, we find this occurred at about 13 kpc out from the Galactic Center (for comparison, the Sun is at about 8.5 kpc). In other words, both the metallicity and orbit of the Smith Cloud are consistent with it being flung out of the outer disk of the Milky Way, about 70 million years ago. This scenario is illustrated in Figure 3.

sc-external

Figure 3: The orbit of the Smith Cloud. The Cloud is being shaped by gravitational and gas-pressure forces. The Cloud’s kinematics and metallicity suggest an origin in the outer disk about 70 million years ago. 30 million years from now, the cloud is expected to return to the disk. Courtesy Ann Feild.

These results confirm that the Smith Cloud is made of Galactic material. But they do not explain how the Cloud was launched into its orbit. Could it have been blown out of the outer disk by a cluster of supernovae? Supernovae are known to drive winds of gas and dust out of galaxies, and this would naturally explain the high velocity of the Cloud. However, the Cloud is much more massive than those observed in the vicinity of known Galactic supernovae explosions, so it would have had to be an unusually energetic supernova event.

A more exotic possibility invokes regions of dark matter, known as mini-halos, which are thought to be constantly bombarding the disk of the Milky Way. If one of these mini-halos were to accumulate Galactic gas during its passage through the disk, it could create an object like the Smith Cloud: a blob of Galactic gas held together by the gravity of unseen dark matter. Far-fetched as this may sound, mini-halos are predicted by theoretical work on galaxy formation, with simulations expecting that tens or hundreds of such mini-halos should exist for every large galaxy like the Milky Way. This creates a fascinating picture of the disk of the Galaxy, where gas can be transported from one location to another by catching a ride on a dark mini-halo. More research will explore this possibility, particularly by predicting what the observational signatures of these mini-halos should be, and seeing whether the observed morphology of high-velocity clouds can be reproduced.

 

For more reading, check out:

Fox et al. 2016, ApJL, 816, L11 (reporting the above results)

Galyardt & Shelton 2016, ApJL, 816, L18 (discussing dark-matter mini-halos)

Lockman et al. 2008, ApJL, 679, L21 (background on the Smith Cloud)

Jan 152016
 

By Miguel Requena-Torres, Postdoc at STScI

Star formation is a beautiful event that goes on in galaxies. This phenomenon can be quiet or violent. In our own Galaxy, for example, there are quiet clouds of material that evolve slowly to form filamentary structures with growing pockets of gas and dust that eventually acquire enough density to start gravitational collapse, leading to the birth of stars. But our Galaxy also harbors violent regions where cataclysmic events inject enough energy into the surrounding medium that can trigger star formation.  In the last few years, new theories have been developed to explain the formation of stars in our own Galaxy by studying the density of the clumps that could potentially become gravitationally bound. The parameter of interest is the Jean’s Mass, approximately setting the limit between a clump that can support itself by its internal gas pressure and one that cannot, the latter being subject to a runaway gravitational collapse.  This limiting mass seems not to change much throughout our Galaxy, except its inner region: within the inner few hundred parsecs of our Galaxy, the so-called Central Molecular Zone, the situation is quite different!

This Central Molecular Zone is a mix of hot and cold dust, molecules and atoms that are not at all in a quiescent state. The massive black hole at the center of our Galaxy seems to have produced a barred galactic potential, structuring the surrounding material in two different sets of orbits, X1 and X2, with matter moving from the outer orbit into the inner one through some interaction areas. The X1 orbits could have a twisted structure at pericenter, compressing the gas and moving it into the inner orbits. Due to the mass densities observed and the frequency of compressional events expected in the Central Molecular Zone, one would expect this region to be a perfect nursery of stars in the Galactic center. Indeed, evidence that this has been the case in the past is the presence of three of the most massive stellar cluster in the Galaxy. Due to their mass, the stars in these clusters should be young (with a lifetime of few million years).

One of these massive stellar clusters, the so-called Central cluster, is located very close to the supermassive black hole. This cluster, together with other massive stars that orbit the central engine of our Galaxy, dissociate and ionize the molecular and atomic material in the surrounding region, creating at the outer edge of it a very dense molecular structure called the Circumnuclear Disk. The Circumnuclear Disk is not a real disk, but consists of streamers of material that are rotating around the center of the Galaxy and that are probably compressed and ionized as they enter the inner 1 parsec, forming a structure called the mini-Spiral.

 Slide2

Figure 1:  Circumnuclear disk of the Galaxy and mini-Spiral observed by the Submillimeter Array interferometer. CN emission is in green, showing the densest region in the gas streamers. The ionized material of the mini-spiral is in orange. Red and blue correspond to the shock-tracers SiO and H2CO, respectively. (Image credit: Martin et al. 2012).

The other two massive clusters, called the Arches and the Quintuplet, are located further away from the center of the Galaxy, at positive Galactic longitudes. They lie in a very interesting area, surrounded by a lot of dense material and by what looks like magnetic tubes of plasma with bright centimeter continuum emission.  These clusters themselves produce very intense ionization fields that carve-in the molecular material that surrounds them.

In the last few years, the Herschel Space Observatory has been able to map the relatively warm gas in the plane of the Galaxy.  These observations, using different molecular tracers, have clearly shown that in the Central Molecular Zone there is a ring of dense material around the central black hole with a radius of about 150 pc.  There is still a debate regarding how big this ring-like structure really is and whether it closes-in. Its interpretation in terms of individual clouds is problematic because of the range of velocities involved. The Galactic center is a very crowded area, with material spreading in velocity from -200 km/s to 200 km/s. Most of the material at negative longitude shows negative velocity whereas material at positive longitude shows positive velocity. However, in any given region, it is possible to identify more than one component, with velocities differing by more than 50 km/s. This, together with the spread in velocity due to the presence of turbulence, complicates the identification of individual clouds.

check1

Figure 2: Twisted disk of the Galaxy observed by the Hi-Gal Hershel survey at 250 microns. This ring-like features covers most of the Central Molecular Zone (Image credit: Molinari et al. 2011).

The only region in this ring-like structure that currently seems to be forming stars efficiently is the Sgr B2 region. With three very dense cores (S, M and N), this region shines strongly at radio and sub-millimeter wavelengths, lying at one of the edges of the large twisted ring. Each of these cores, currently in a molecular hot-core phase, will eventually form a small cluster of stars. Their current evolutionary phase is fascinating due to their chemical richness and in this regard Sgr B2 is a case of study, with new molecules being discovered there every year (the latest being isopropyl cyanide, C3H7CN, and methyl isocyanate, CH3NCO, discovered in 2014 and 2015, respectively – for more info on this fascinating new discoveries check Astrochymist at http://www.astrochymist.org/astrochymist_ism.html).

The rest of the ring-like structure seems more quiet, although there is a very dense molecular cloud, called The Brick, that has recently raised a lot of interest, having been the target of most of the radio and sub-mm facilities in the world (ALMA, SMA, VLA, APEX, Effelsberg, ATCA). These observations have shown that this region could be dense enough to form the next generation of stars. Indeed, the presence of Maser emission could be interpreted as a sign of on-going star formation, but it could also be produced by strong shocks commonly found in the Galactic center.  Regardless whether or not star formation has already started, this is one of the more prominent regions that will likely form stars in the near future.

Finding star formation in the Circumnuclear Disk of our Galaxy is not an easy task. The streamers that fall into the inner ionized region were thought to harbor some pockets of star formation, however, when we observed them a few years ago using CO and the dense gas tracers HCN and HCO+, we concluded that these objects were not gravitationally bound. The material there seems to be heavily disrupted by the sheer forces that arise due to their close proximity to the central black hole.  The mass of one of the regions was close to be gravitationally bound, however, this region also showed unexpected vibrational excited emission of HCN and, when accounting for its presence in the analysis, its estimated mass density decreased deeming on-going star formation in this region of the Circumnuclear Disk unlikely. More recent observations of this unique region have unveiled the presence of the shock-tracer molecule SiO. A possible explanation is that this is the location where two of the clouds in the vicinity of the high velocity streamers collide. Our new ALMA observations of CO, HCN, HCO+, CN, and tens of other molecules in the Circumnuclear Disk will soon shed some light on this fascinating structure near the heart of our Galaxy.

Another fascinating region at the Galactic center is a bubble-like structure seen in continuum and molecular emission, likely produced by a cataclysmic event.  This elongated bubble is orthogonal to the twisted ring observed by Herschel. In the edges of this bubble, the material has been compressed and is possible to observe clumps in many different molecular tracers. The expected high densities of these clumps deem them as promising sites for on-going star formation. But this still needs to be confirmed as it is not clear that their densities are high enough to keep them gravitationally bound in the extreme physical environment that surrounds the monster black hole at the center of our Galaxy.

Slide3

Figure 3: Composite image of the Central Molecular Zone showing the elongated bubble, outlined by the blue ellipses. Chandra (x-ray) observations are in blue, Hubble (near-IR) in yellow and Spitzer (mid-IR) in red. (Image credit: NASA).

 

References:

Belloche et al. 2014, Sci, 345, 1584

Binney et al. 1991, MNRAS, 252, 210

Halfen et al. 2015, ApJ, 812, 5

Requena-Torres et al. 2012, A&A, 542, 21

Martin et al. 2012, A&A, 539, 29

Molinari et al. 2011, ApJ, 209, 337

Mills et al. 2013, ApJ 779, 47

Mills et al. 2015, ApJ, 805, 72

 

Reviews:

Morris & Serabyn, 1996, ARA&A, 34,645

Genzel et al. 2010, RevModPhys, 82, 2121

 

Dec 162015
 

By Amaya Moro-Martin, AURA Astronomer at STScI

The solar system is densely packed with planets and also contains an asteroid and a Kuiper belts, remnants from the planet-formation epoch.  Are planetary systems with high-mass planets any different in terms of remnant planetesimal belts from those with low-mass planets or those with no known planets? What does this tell us in terms of planetary system formation and evolution?

how-meteors-could-have-brought-life-to-earth-slow-speed_59714_600x450Image credit: Lynette Cook

Planetesimals are the building blocks of planets, and mid and far-infrared observations with Spitzer and Herschel indicate that at least 10–25% of mature stars (10 Myr to 10 Gyr) harbor planetesimal disks with disk sizes of tens to hundreds AU (this frequency is a lower limit because the surveys are limited by sensitivity). The evidence for planetesimals comes from the presence of circumstellar dust: because the lifetime of the dust grains (<1 Myr) is much shorter than the age of the star ( >10 Myr), it is inferred that the dust cannot be primordial but must be the result of steady or stochastic dust production generated by the collision, disruption, and/or sublimation of planetesimals, like the asteroids, comets and Kuiper belt objects in our solar system. The presence of these debris disks in both single- and multiple-star systems, and around A- to M-type stars (also around the progenitors of white dwarfs), spanning several orders of magnitude difference in stellar luminosities, imply that planetesimal formation, a critical step in planet formation, is a robust process that can take place under a wide range of conditions. It is therefore not surprising that in some cases planets and debris disks coexist. But are dust-producing planetesimal disks more or less common around stars with planets? Using the evolution of the solar system as a model, in its early history, a star with planetary companions could be expected to be surrounded by a massive debris disk produced by the planetesimal swarm that formed the planets, the latter exciting planetesimal collisions and dust-production while undergoing orbital migration. On the other hand, at a later stage, the star could harbor a sparse dust disk after the dynamical rearrangement of the planets is complete and the planetesimal swarm has undergone significant dynamical clearing. Do observations support these trends?

Because the study of the planet-debris disk correlation could shed light on the formation and evolution of planetary systems and may help “predict” the presence of planets around stars with certain disk characteristics, we have carried out a statistical study of an unbiased sub-sample of the Herschel DEBRIS and DUNES debris disk surveys, to assess whether the frequency and properties of debris disks around a control sample of solar-type stars are statistically different from those around stars with planets. Out of the 466 and 133 stars in the DEBRIS and DUNES samples, respectively, we have selected a subsample of 204 FGK stars located at distances <20 pc (to maximize survey completeness), with ages >100 Myr (to avoid introducing a bias due to disk evolution), and with no binary companions at <100 AU (to avoid introducing a bias due to the observed differences in both disk frequency and planet frequency between singles and multiples). The debris-disk frequency within this unbiased sample is 0.14 +0.3/-0.2 .

In this clean sample, we don’t find any evidence that debris disks are more common or more dusty around stars harboring high-mass planets (> 30 MEarth) compared to the average population. Overall, this lack of correlation can be understood within the context that the conditions to form debris disks are more easily met than the conditions to form high-mass planets, in which case one would not expect a correlation based on formation conditions; this is also consistent with the studies that show that there is a correlation between stellar metallicity and the presence of massive planets, but there is no correlation between stellar metallicity and the presence of debris disks. Another factor contributing to the lack of a well-defined correlation might be that the dynamical histories likely vary from system to system, and stochastic effects need also to be taken into account, e.g., those produced by dynamical instabilities of multiple-planet systems clearing the outer planetesimal belt or the planetesimal belt itself triggering planet migration and instabilities.

Regarding low-mass planets (< 30 MEarth), one would expect that if the planets formed in the outer region and migrated inward, low-mass planets would have been inefficient at accreting or ejecting planetesimals, leaving them on dynamically stable orbits over longer timescales. On the other hand, high-mass planets would have been more efficient at ejecting planetesimals, leaving behind a depleted population of dust-producing parent bodies. Alternatively, if the planets formed in situ, the timescale for the planet to eject the planetesimals would have been shorter in systems with high-mass planets than with low-mass planets. Under both scenarios, from an evolution point of view, one would expect to find a positive correlation between low-mass planets and the presence of a remnant dust-producing planetesimal disk and, in fact, preliminary analyses of the Herschel surveys have found tentative evidence of such correlation. However, our clean sample does not confirm the presence of this correlation. Why? It could be because the true migration histories of the systems studied may be significantly more complicated than the two scenarios described above; for example, in our own solar system, it is now well established that the ice giants, Uranus and Neptune, migrated outward over a significant distance to reach their current locations, sculpting the trans-Neptunian population as they did so. Another explanation could be because the planets detected by radial velocity surveys and the dust observed at 100 μm occupy well-separated regions of space, limiting the influence of the observed closer-in planets on the dust production rate of the outer planetesimal belt. But it could also be that our sample is too small to detect such a correlation because having a clean sample that avoids the biases mentioned above comes at a price: in our sample, a positive detection of a correlation could have been detected only if the disk frequency around low-mass planet stars were to be about four times higher than the control sample.

Another aspect that we have explored is the role of planet multiplicity. Dynamical simulations of multiple-planet systems with outer planetesimal belts indicate that there might be a correlation between the presence of multiple planets and debris. This is because the presence of the former indicates a dynamically stable environment where dust producing planetesimals may have survived for extended periods of time (as opposed to single-planet systems that in the past may have experienced gravitational scattering events that resulted in the ejection of other planets and dust-producing planetesimals). However, our sample does not show evidence that debris disks are more or less common, or more or less dusty, around stars harboring multiple-planet systems compared to single-planet systems.

And how do the observed debris disks compared to our solar system? Because our sample does not show any evidence of disk evolution in Gyr timescales, we can look at the distribution of disk fractional luminosities (Ldust/Lstar; a distance-independent variable). We find that a Gaussian distribution of fractional luminosities in logarithmic scale centered on the solar system value (taken as 10-6.5) fits the data well, whereas one centered at 10 times the solar system’s debris disks can be rejected. This is of interest in the context of future prospects for terrestrial planet detection. Even though the Herschel observations presented in this study trace cold dust located at tens of AU from the star, for systems with dust at the solar system level, the dust dynamics is dominated by Poynting–Robertson drag. This force makes the dust in the outer system drift into the terrestrial-planet region. This warm dust can impede the future detection of terrestrial planets due to the contaminant exozodiacal emission. Ruling out a distribution of fractional luminosities centered at 10 times the solar system level implies that there are a large number of debris disk systems with dust levels in the KB region low enough not to become a significant source of contaminant exozodiacal emission. Comets and asteroids located closer to the star are other sources of dust that can contribute to the exozodiacal emission (and for those, Herschel observations do not provide constraints), but planetary systems with low KB dust-type of emission likely imply low-populated outer belts leading to low cometary activity. These results, therefore, indicate that there are good prospects for finding a large number of debris disk systems (i.e., systems with evidence of harboring planetesimals) with exozodiacal emission low enough to be appropriate targets for terrestrial planet searches.

Larger samples are needed to improve the statistics of the studies mentioned above, but, as we have done here, care must be taken to avoid biases. But increasing the sample size is not enough. There are two additional aspects that need to be improved upon and, with the data at hand, cannot be addressed at the moment: our ability to detect fainter debris disks (as we may only have detections for the top 20% of the dust distribution), and to detect or rule out the presence of lower-mass planets to greater distances. For the later, of critical importance is that the planet search teams make the non-detections publicly available so we can identify systems for which the presence of planets of a given mass can be excluded out to a certain distance.

For more info see Moro-Martín et al. 2015, ApJ, 801, 143 and references therein.