Mar 022015

By Olivia Jones, Postdoctoral Fellow at STScI

The evolution of dust in galaxies is intrinsically linked with that of the stars, with the formation of new grain material coinciding with stellar deaths. Ultimately this material is returned (via gentle stellar outflows or explosively in the case of supernovae) to the interstellar medium, where it resides for approximately 10^8 years before it is gradually consumed by subsequent generations of star and planet formation. This perpetual recycling and associated enrichment of the gas and dust gradually alters the chemical composition of a galaxy.

Asymptotic Giant Branch (AGB) stars are important contributors to enrichment of the interstellar medium. AGB stars are cool, luminous giants that lose mass at high rates via pulsation-enhanced, dust-driven winds. During this phase of evolution the effective stellar temperature is low enough for dust grains and molecules, notably CO, to condense in their winds, forming substantial circumstellar envelopes detectable in the infrared and millimeter domains.

AGB stars are classified into two major spectral types: carbon-rich stars and oxygen-rich stars. The classification depends on the C/O ratio, which is decisive in the future chemical evolution. In oxygen-rich environments (where the C/O ratio < 1), the dust tends to be composed of amorphous or crystalline forms of silicates and metal-oxides such as amorphous aluminum oxide. Conversely, carbonaceous dust species such as amorphous carbon, SiC and MgS dominate the dust production in carbon-stars (C/O >1). Observational estimates suggest that two thirds of the dust we detect in the Milky Way has been produced by oxygen-rich AGB stars (Gehrz 1989). However, at sub-solar metallicities their total dust contribution relative to supernovae, the efficiency of dust condensation and the chemical composition of the dust remains uncertain.
Fig1_Orich_spec Fig1_crich_spec











Figure 1 (click on plots to enlarge): Example Spitzer-IRS spectra of oxygen-rich and carbon-rich evolved stars with a dust excess in the Small Magellanic Cloud (Ruffel et al. submitted). The key spectral features due to silicates and carbonaceous dust are marked in the top panel.

Figure2a Figure2b
Figure 2 (click on plots to enlarge): Variation in the chemical composition of the crystalline silicate dust alters the peak positions and shapes of the narrow spectral features produced by resonances in the crystalline silicate lattice. Comparing the relative strengths of spectral features (at 23- and 28- microns) which are attributed to different crystalline silicate species in the Large Magellanic Cloud, Small Magellanic Cloud and Milky Way, show a change in the crystalline silicate dust mineralogy with metallicity (Jones et al. 2012). The solid symbols indicate that both features are present in the spectra.

With Spitzer we have observed evolved stars across a range of metal content; from present day solar abundances to metallicities that resemble star-forming galaxies at high redshift (e.g Meixner et al. 2006). These observations show that metallicity has a significant influence on the production and chemical composition of the oxygen-rich dust. In oxygen-rich stars silicates become oxygen poor at lower metallicity, with forsterite becoming less common than enstatite in the Magellanic Clouds, compared to the Galaxy (Jones et al. 2012). This is also seen in low-mass globular cluster stars, where conventional silicate features are seen to disappear in stars below [Fe/H] = -1; instead a featureless mid-IR excess is seen which is possibly caused by metallic iron dust (McDonald et al. 2010). Amorphous alumina oxide is also reduced compared to the Milky Way (Jones et al. 2014). This is because the molecules available for dust production in oxygen-rich stars are limited by the abundances of heavy elements in the photosphere, which reflect the initial abundances of the molecular cloud from which the star formed; this is not the case for carbon stars which produce their own carbon, so the resulting dust condensation sequence in carbon-rich AGB stars shows only minor changes with metallicity (Sloan et al. 2014). Furthermore, at lower metallicities there is less initial oxygen and the numerical ratio of carbon to oxygen atom abundances increases. Consequently, the timescales before dredge-up causes the star to become carbon rich are shorter. Observations of the Magellanic Clouds suggest that the mass return from AGB stars is dominated by carbon stars (Riebel et. al 2012), and cumulatively AGB stars may account for over 50% of the dust production in these galaxies (Boyer et al. 2012, Matsuura et al. 2013).

Recent observational results indicate that large amounts of dust can form in very metal-poor AGB stars (Fe/H] < -2 ; Boyer et al. 2015), and that they contribute significantly to the total dust budgets of metal-poor, high-redshift galaxies. However, it unclear how AGB stars in metal-poor environments are able to produce substantial quantities of dust. Understanding how the conditions in the early universe affect the production and chemical composition of the dust grains will require the superior sensitivity and mid-infrared spectroscopy available with the JWST.


Boyer et al. 2012 (ApJ, 748, 40)
Boyer et al. 2015 (ApJ, 800, 51)
Gehrz 1989 (IAUS, 135, 445)
Jones et al. 2012 (MNRAS 427, 3209)
Jones et al. 2014 (MNRAS 440, 631)
McDonald et al. 2010 (ApJ, 717, 92)
Matsuura et al. 2013 (MNRAS, 429, 2527)
Meixner et al. 2006 (AJ, 132, 2268)
Ruffle et al. (MNRAS, submitted)
Sloan et al. 2014 (ApJ, 791, 28)

Feb 032015

By Annalisa Calamida, Postdoctoral Fellow at STScI

The Milky Way bulge is the closest galaxy bulge that can be observed and studied in detail. The bulge could include as much as a quarter of the stellar mass of the Milky Way (Sofue et al. 2009), and the characterization of its properties can provide crucial information for the understanding of the formation of the Galaxy and similar, more distant galaxies. We observed the Sagittarius low-reddening window, a region of relative low extinction in the bulge, E(B-V)  ≤ 0.6 mag (Oosterhoff & Ponsen 1968), with the Wide-Field Channel of the Advanced Camera for Surveys (ACS) and the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST). The time-series images were collected in the F606W and F814W filters and cover three seasons of observations from October 2011 to October 2014. The main goal of the project led by Dr. Kailash Sahu is to detect isolated stellar mass black holes and neutron stars in the Galactic bulge and disk through gravitational microlensing.

However, these data, covering 8 WFC3 and 4 ACS fields and including a sample of about 2 million stars, are a gold mine for other Galactic bulge stellar population studies. I started a project aimed at characterizing the bulge stellar populations through the study of different evolutionary phases. The work is based on the same data set used for the microlensing project and on observations taken with ACS in 2004. By combining the observations of one of the ACS fields with those taken in 2004, we measured very precise proper motions, better than ~ 0.5 mas/yr (~ 20 Km/s) at F606W ~ 28 mag, in both axes. Proper motions allowed us to separate disk and bulge stars and to obtain the deepest clean color-magnitude diagram of the bulge. As a consequence we identified for the first time a clearly defined white dwarf cooling sequence in the Galactic bulge (Calamida et al. 2014).

The characterization of the white dwarf population is an effective method to understand the formation history of the bulge and the Milky Way itself, since most stars end their life as white dwarfs. The white dwarf population of the bulge contains important information on the early star formation history of the Milky Way. Our knowledge is most extensive for the white dwarf population of the Galactic disk, in which numerous white dwarfs were discovered through imaging surveys, such as the Sloan Digital Sky Survey (Eisenstein et al. 2006, Kepler et al. 2007, Kleinman et al. 2013). White dwarfs have been identified and studied in a few close Galactic globular clusters too, thanks to deep imaging with HST (Richer et al. 2004; Hansen et al. 2007; Kalirai et al. 2007; Calamida et al. 2008; Bedin et al. 2009). Many of the Milky Way bulge stars are metal rich – several of them even reaching super solar metallicity – which means that they are similar to the Galactic disk population, and the bulge stellar space density is closer to that of the disk than that of globular clusters. However, many of the bulge stars are old, like globular cluster stars, which means that they show common properties with both the disk and the cluster populations. Understanding whether the white dwarfs in the Galactic bulge more closely resemble those found in either the disk or the clusters is therefore an important part of developing our understanding of how the Milky Way was formed, as well as the bulge formation, and, indeed, the nature of the Galactic bulge itself.

The color-magnitude-diagram in the F606W and F814W filters of selected bulge stars is shown in Fig.1, where confirmed white dwarfs are marked with larger filled dots. We used theoretical cooling tracks from the BaSTI database (Pietrinferni et al. 2004; 2006) and models from Althaus et al. (2009) to fit the bulge white dwarf cooling sequence, and a distance modulus DM0 = 14.45 mag and reddening E(B-V) = 0.5 mag (Sahu et al. 2006). These models assume different core and atmospheric compositions: CO-core white dwarfs with an hydrogen-rich envelope (DA), CO-core white dwarfs with an helium-rich envelope (DB) and He-core white dwarfs. Assuming an age of about 11 Gyr and an average solar chemical composition for bulge stars, isochrones predict a turn-off mass of ~ 0.95 M, and through the initial-to-final mass relationship, a white dwarf mass of ~ 0.53 – 0.55 M (Weiss & Ferguson 2009, Salaris et al. 2010).  The figure below shows cooling tracks for DA (dashed blue line) and DB (dashed green) CO-core white dwarfs with mass M = 0.54 M and He-core white dwarfs (dashed red) with mass M = 0.23 M plotted on the Galactic bulge cooling sequence. The DA and DB CO-core cooling tracks are unable to reproduce the entire color range of the observed white dwarf cooling sequence. An increase in the mean mass of the white dwarfs would move these models towards bluer colors, further increasing the discrepancy. The lower mass He-core cooling track for M = 0.23 M fits the red side of the bulge white dwarf sequence (note that empirical evidence shows that the lower mass limit for white dwarfs is ~ 0.2 M, Kepler et al. 2007). These results support the presence of a significant fraction (~ 30%) of low-mass (M ≤ 0.45 M) He-core white dwarfs in the Galactic bulge. According to stellar evolution models, in a Hubble time, these low-mass white dwarfs can only be produced by stars experiencing extreme mass loss events, such as in compact binaries. Among the brighter very red white dwarfs we found indeed one ellipsoidal variable (marked with a blue dot in Fig.1), probably composed of a white dwarf accreting from a main-sequence companion, and two dwarf novae (magenta dots). The fainter counterparts of these binaries could populate the region where the reddest white dwarfs are observed in the color-magnitude diagram. These systems could be composed of a white dwarf and a low-mass (M <  0. 3M) main-sequence companion. This hypothesis is further supported by the finding of five cataclysmic variable candidates in the same field (green dots).


Figure 1: proper-motion cleaned bulge color-magnitude diagram in the F606W and F814W filters. White dwarfs are marked with larger filled dots. Dashed lines display cooling tracks for CO- and He-core white dwarfs. The ellipsoidal variable and the dwarf novae are marked with blue and magenta dots, respectively, while green dots mark cataclysmic variable candidates. Error bars are also labeled.

Our observational campaign ended in November 2014 and now, by adding the third season of observations and including all the twelve ACS and WFC3 fields, we will be able to increase our sample of stars by one order of magnitude. The increased statistics will allow us to better constrain the nature of the white dwarf population in the bulge, for instance, through comparing white dwarf and main-sequence star counts.

In the future, this study will greatly benefit from the advent of the James Webb Space Telescope (JWST), which will have an improved sensitivity and spatial resolution compared to HST. Moreover, JWST will observe in the near-infrared, where the extinction is a factor of ten lower compared to the optical. The new telescope will allow us to observe the bulge white dwarfs in the near-infrared, something that is now barely feasible with HST. The white dwarf cooling sequence will then be used to estimate the age of stellar populations in the bulge, to be compared to estimates obtained by adopting other diagnostics, such as the main-sequence turn-off. This study will be fundamental for constraining the presence of an age spread in the Galactic bulge, which is now a hotly debated topic.


For more details see Calamida et al. 2014, ApJ, 790, 164



  • Sofue et al. 2009, PASJ, 61, 227
  • Oosterhoff & Ponsen 1968, BANS, 3, 79
  • Calamida et al. 2014, ApJ, 790, 164
  • Eisenstein et al. 2006, ApJS, 167, 40
  • Kepler et al. 2007, MNRAS, 375, 1315
  • Kleinman et al. 2013, ApJS, 204, 5
  • Richer et al. 2004, AJ, 127, 2904
  • Hansen et al. 2007, ApJ, 671, 380
  • Kalirai et al. 2007, ApJ, 671, 748
  • Calamida et al. 2008, ApJ, 673, L29
  • Bedin et al. 2009, ApJ, 697, 965
  • Pietrinferni et al. 2004, ApJ, 612, 168
  • Pietrinferni et al. 2006, ApJ, 642, 797
  • Althaus et al. 2009, A&A, 502, 207
  • Sahu et al. 2006, Nature, 443, 534
  • Weiss & Ferguson 2009, A&A, 508, 1343
  • Salaris et al. 2010, ApJ, 716, 1241
Jan 122015

By Massimo Robberto, Observatory Scientist at STScI

In 1994, when I was a young Assistant Astronomer in Italy, I started regularly visiting STScI for a collaboration on stellar coronagraphy with Mark Clampin and Francesco Paresce. Those were the months immediately following the first Hubble Servicing Mission and excitement was in the air at the Institute. New pictures comparing the “pre” and “post’ performance of the telescope were posted daily, as testimony for NASA’s spectacular achievement and the bright future ahead. Still, traces of the shock caused by the initial failure (spherical aberration) were evident. In particular, in the control room of the first floor an entire wall had been covered with hundreds of cartoons from all over the world mocking NASA for the Hubble primary mirror disaster. STScI staff had diligently collected and posted all of them, regardless on their quality or even language. A bit of irony helps keeping things in the right perspective when a crisis strikes, and staying focused, to work on a solution.

One of those cartoons attracted my attention. It showed a group of perplexed experts, the “Hubble Design Group”, wondering if “outer space really is blurry and out of focus” (Figure 1). I liked it immediately and discretely made my copy. The cartoon was different from the others because, I thought, it was a cartoon about us, about how our intelligence works. We always look for an explanation, for a reason, and when all good possibilities fail, we start considering the bizarre and the improbable. We feel that saying “I don’t know” and stop wondering is even worse than opening the door to what may look absurd. And our secret hope, as scientists, is to discover that something apparently absurd is actually real.


Figure 1: Ralph Dunagin’s strip, Dunagin’s People, ran from 1960 to 2001. The Hubble Servicing Mission occurred in 1993.

Fast-forward 20 year: today, the Hubble Space Telescope is still fully operational at its best, acquiring data that are transforming our knowledge of the Universe.  In particular, a Hubble Legacy Program is underway to study one of the most spectacular phenomena gloriously unveiled by the Hubble images: gravitational lensing (Figure 2). As predicted by Einstein, mass warps space-time. When a large mass is present, as in the case of the dark matter halos surrounding clusters of galaxies, the light of more remote objects along our line of sight gets distorted. The signal is so strong (“strong gravitational lensing”) that we can use it to map the distribution of dark matter in these halos. This is at present the only direct method we have to probe the effects of what may be the most enigmatic particles in physics.


Figure 2. This HST/ACS image, obtained in 2009 immediately after the last Hubble Servicing Mission, shows a gravitationally lensed background galaxy in the field of the Arp 370 galaxy cluster.

If the alignment conditions are favorable, the brightness of some remote galaxy may be magnified: the gravitational lens effect can make visible objects that would have otherwise remained beyond Hubble’s reach. One can say that the so-called Frontier Fields program is using two telescopes in a series, one made by us (Hubble) and one provided by Nature (gravitational lensing), to search for the most distant galaxies and supernovae. With this “trick” Hubble can give us a glimpse of the type of science that will be routinely carried out by the James Webb Space Telescope.

As one moves further away from the center of a galaxy cluster, the gravitational lens effect becomes less pronounced. No matter where we look in the sky, the shapes of thousands of galaxies are all slightly distorted in some way (“weak gravitational lensing”). It is a vanishingly small signal, but it is correlated for all the galaxies that are at similar distances, so it is possible to detect it by applying statistical methods to the most exquisite wide-field images. Future space missions such as Euclid and WFIRST are designed so as to carry out this type of study, which is critical to understand the build-up of giant cosmic structures over time and the process of galaxy formation.

Another fascinating aspect is that amplification can be caused by the random and temporary alignment of stars in crowded fields. In this case the brief light amplification (micro-lensing) can be used to unveil the presence of planets like Earth. WFIRST has the capability of monitoring billions of stars in the Galactic Bulge, where lensed planets could flash like lights on a Christmas tree. Crafting a suitable cadence of observations to exploit this capability is one of the main challenges faced by WFIRST.

A 10m-class space telescope like the proposed ATLAST will eventually produce images of incredible sensitivity and spatial resolution. At that point the ubiquitous gravitational lensing will become more obvious and, perhaps, just another ordinary aspect of our perception of the Universe.

Twenty-five years after launch, the Hubble Space Telescope is showing us that because of gravitational lensing the Universe is really somewhat blurry and out of focus. The intuition of a cartoonist has anticipated one of the most spectacular discoveries of all time. Let’s keep an open mind to more surprises. What today looks like an absurd concept, imagined only in the mind a creative artist, may become tomorrow part of our understanding of this beautiful, and very extravagant, Universe.

Dec 022014

By Steve Lubow, Observatory Scientist at STScI

The orbits of a particle about a central point mass are well known and have analytic solutions that were determined by Newton in 1687. In the case that a second point mass is present, forming a binary system, the particle orbits are much more complicated and simple analytic descriptions are possible for only special cases, such as the famous Lagrange points. This so-called three-body problem has been the subject of many studies for several centuries by Euler, Lagrange, Poincare, and others. The three-body problem has many astronomical applications.

In the early 1960s,  Kozai and Lidov independently discovered a fairly general class of orbits in the three-body problem that has some peculiar properties. Kozai was motivated by his studies of asteroids that orbit under the influence of the Sun and Jupiter. Lidov was motivated by the analysis of orbits of artificial satellites at the beginning of the Russian space program. Consider a particle that orbits about a single central object whose motion is disturbed by a distant companion. One might think the effects of the companion do not matter much, since it is far away. However, they found that over time its effects can build up to produce strong changes in the particle’s orbit. They showed that a particle orbit that is initially circular and sufficiently inclined would undergo tilt and eccentricity oscillations. During the oscillations, the particle orbit eccentricities can become quite large for sufficiently inclined initial orbits. For example, for an initial orbit tilt of 60 degrees, an initially circular orbit reaches an eccentricity of about 0.75.

The key to understanding the Kozai-Lidov (KL) effect is that the vertical component (perpendicular to the binary orbital plane) of the particle’s angular momentum is nearly conserved, while the particle’s orbit plane undergoes tilt oscillations. As the orbit tilt evolves to a lower inclination angle over part of the oscillation cycle, its eccentricity must grow to maintain the same vertical angular momentum.

There have been many applications of this KL effect apart from these original motivations. These include triple star systems (Eggleton & Kiseleva-Eggleton 2001; Fabrycky & Tremaine 2007), extrasolar planets with inclined stellar companions (Wu & Murray 2003; Takeda & Rasio 2005), inclined planetary companions (Nagasawa et al. 2008), merging supermassive black holes (Blaes et al. 2002), stellar compact objects (Thompson 2011), and blue straggler stars (Perets & Fabrycky 2009).

Early in 2014, I was working with Rebecca Martin, a Sagan Fellow at the University of Colorado, and other collaborators on explaining some fluid (SPH) simulation results that she had obtained for Be star disks. The disks were taken to orbit about Be stars that have neutron star companions on an eccentric orbits, as suggested by observations. In addition, the simulations considered the disk to be initially circular and inclined with respect to the orbit plane of the binary. The simulations showed that the disk became substantially eccentric. We had initially thought that the disk eccentricity could be explained by some tidal effects that had been found in previous simulations and had been explained analytically. These effects were analyzed for a disk that is coplanar with the binary. For example, an eccentric binary has an eccentric component of its tidal potential that can induce eccentricity in a disk. We thought the latter was the most plausible explanation for the eccentricity, as we discussed in our paper (Martin et al 2014a).

However, I was suspicious of our explanation because I thought this tidal effect would become smaller with higher orbit inclination, while we found that eccentricity was larger at higher inclinations. So I suggested that Rebecca try numerically to determine the orbits of particles, rather than performing the computer-intensive SPH simulations. The result was that the particles underwent KL oscillations — obvious in hindsight. To confirm this result, Rebecca performed simulations with a circular orbit companion, for which the KL effect can operate, while the eccentric tidal effect would not. She found that the eccentricity growth was still present. We found that the disk undergoes coherent tilt oscillations much like a rigid body. The oscillation period agrees well with the expectations of KL theory. This is the first time that the KL effect has been found to operate on a fluid (Martin et al 2014b).

During tilt oscillations, the disk eccentricity gets fairly high, but it is reduced by disk dissipation.  After a few KL oscillations, the disk evolves to an eccentric state and at the critical minimum tilt angle for KL oscillations of about  40 degrees with respect to the binary orbit plane (see Figure 1). With Rice University postdoctoral fellow Wen Fu, we are exploring the range of parameters for which the KL effect operates on disks. Misaligned disks are likely common in young wide binary systems and so the KL effect may have an important influence on the evolution of some protoplanetary disks.

Fig 1Figure 1: Evolution of disk eccentricity and inclination in degrees as a function of time in binary orbital periods for a disk that orbits a member of an equal mass binary binary system that has an initial tilt of 60 degrees from the binary orbit plane and is initially circular.

The video (found at this link) shows the evolution of the disk in Figure 1 that undergoes KL oscillations viewed in different planes. The binary lies in the X-Y plane, while the disk is initially tilted by 60 degrees with respect to this plane. The disk precesses about the Z-axis. The disk eccentricity is apparent from the displacement of the central star from the disk center. Note that some disk mass is transferred to the companion as a consequence of the reduction of tidal forces at high inclination (Lubow et al 2014) and because the disk becomes eccentric.


  • Blaes, O., Lee, M. H., & Socrates, A. 2002, ApJ, 578, 775
  • Eggleton, P. P. & Kiseleva-Eggleton, L. 2001, ApJ, 562, 1012
  • Fabrycky, D. & Tremaine, S. 2007, ApJ, 669, 1298
  • Lubow, S. H., Martin, R. G., & Nixon,C. 2014, ApJ, submitted
  • Martin, R. G., Nixon,C., Armitage, P. J., Lubow, S. H., & Price, D. J. 2014, ApJ, 790, LL34
  • Martin, R. G., Nixon,C., Lubow, S. H., et al. 2014, ApJ, 792, LL33
  • Nagasawa, M., Ida, S., & Bessho, T. 2008, ApJ, 678, 498
  • Takeda, G. & Rasio, F. A. 2005, ApJ, 627, 1001
  • Thompson, T. A. 2011, ApJ, 741, 82
  • Wu, Y. & Murray, N. 2003, ApJ, 589, 605
  • Perets, H. B. & Fabrycky, D. C. 2009, ApJ, 697, 1048


Nov 032014

By Torsten Böker, ESA astronomer at STScI

Almost 25 years of HST observations have shown that most, if not all, large galaxies harbor a super-massive black hole (SMBH) in their nucleus. How and when these exotic objects formed is one of the puzzles of current astronomy. Many black hole studies are focused on images of the high-redshift universe because those can unveil the structure of galaxies in their distant past, and thus tackle the “chicken-and-egg” question of what came first, the black hole or the galaxy.

An alternative path to addressing this question is to study low-mass nearby galaxies, which have only very small central black holes or none at all. Why are these black holes “lagging” in their evolution? Are they still growing, and if so, what regulates their growth?

The answers most likely have to consider the presence of another type of compact massive object often found in galactic nuclei, namely an extremely massive and dense cluster of stars. In fact, these so-called “nuclear star clusters” (NSCs) are the densest stellar systems known, with many millions of stars packed in a radius of only a few light years. To measure their compact structure requires the highest possible spatial resolution, and consequently, NSCs have been studied systematically only during the last decade or so.

It has become clear that NSCs are found in nearly all low-mass galaxies, and that they are an essential ingredient for any recipe to understand the evolution of galactic nuclei. They are most easily observed in the absence of a luminous bulge, which is why our work is focused on late-type spiral galaxies. Fig. 1 shows a prototypical example of a NSC, namely the one in the nearby bulge-less spiral NGC 1042. This NSC is known to contain a low-luminosity SMBH with a mass of less than a million solar masses.

Other well-known examples for a SMBH within a NSC are NGC 4395, and of course our own Milky Way. On the other hand, the Triangulum Galaxy (Messier 33) also has a NSC and is very similar to NGC 1042 in mass and size, but it does not appear to contain any SMBH in its nucleus, at least none more massive than a few tens of thousands solar masses.

Why then do SMBHs exist within some NSCs, but not in others? What regulates the relative importance of the two types of central massive objects, i.e. the ratio of their masses? Does a SMBH destroy its parent cluster once it reaches a certain mass? Or does the presence of a NSC prevent the SMBH from growing its mass any further?


Figure 1: Hubble Space Telescope colour composite image of NGC 1042, created from WFPC2 F450W and F606W exposures. The structural fits to the NSC show unresolved residual emission, indicating the presence of an additional point source (from Georgiev & Böker 2014).

A systematic comparison of NSCs with and without confirmed SMBHs promises to shed light on these questions. Unfortunately, at present there are only a handful of galaxies known to host both a NSC and a SMBH, thus making a statistically sound comparison difficult. In order to improve this situation, my collaborators and I are working to develop observational methods to find more systems with coexisting NSC and SMBH. The challenge here lies in the fact that in this mass range, SMBHs are very difficult to detect, because they are much less active than their more massive counterparts.

We begin by using HST imaging to constrain the luminosities, sizes, and masses of NSCs in a large number of nearby spiral galaxies. We have recently completed a systematic analysis of all WFPC2 images in the HST archive that contain NSCs. By carefully analyzing the color and shape of the NSCs, we find some cases with point-like residual emission which may be indicative of an active galactic nucleus, and thus of a SMBH. Such residuals are, in fact, evident in NGC 1042 (see the inlays in Figure 1) – they likely are caused by the “extra” emission from the SMBH.

We then follow up these SMBH candidates with adaptive optics-assisted ground-based spectroscopy that will allow us to measure the age and total mass of the NSC, and to search for spectroscopic signs for the presence of a SMBH. On the theoretical front, we try to improve our understanding of dense stellar systems by analyzing poorly understood effects caused by the presence of large amounts of gas in the early days of NSC formation which may lead to an evolving stellar mass function via gas accretion, or to runaway growth of stellar-mass black holes.

In this way, we hope to better understand the mutual interaction of SMBHs and NSCs, and to ultimately to learn how “monster” black holes in massive galaxies have formed.

Oct 152014

by Van Dixon, Scientist at STScI

Optical color-magnitude diagrams of Galactic globular clusters generally include one or two UV-bright stars, objects that are brighter than the horizontal branch and bluer than the red-giant branch.  When astronomers first observed these luminous, blue stars, they were a bit confused: What are young, massive stars doing in globular clusters?  The puzzle was solved with the realization that UV-bright stars are not main-sequence stars, but pre-white dwarfs.  Objects in transition, they are evolving from the asymptotic giant branch (or directly from the blue horizontal branch) to the hot tip of the white-dwarf cooling curve.  Because this phase of stellar evolution is short, lasting 103 to 105 years, these objects are rare; only a few dozen are known.

UV-bright stars in globular clusters can be used to address a number of questions. Their high temperatures (generally 10,000 to 100,000 K) make them ideal targets for far-ultraviolet spectroscopy, a powerful tool for measuring chemical abundances, particularly of species that are unobservable in cool, red-giant-branch (RGB) stars.  To first order, globular cluster stars have identical ages and initial chemical compositions, so any differences between a UV-bright star’s chemistry and that of its RGB siblings provide important constraints on theories of post-RGB evolution.  Astronomers studying the interstellar medium use UV-bright stars as background sources (with known distances!) for absorption-line studies of the ISM.

One of the most famous (and best-named) UV-bright stars is von Zeipel 1128 in the globular cluster M3 (hereafter vZ 1128; von Zeipel 1908, Strom & Strom 1970). Pierre Chayer (STScI) and I have analyzed archival FUSE, HST/STIS, and Keck HIRES spectra of this remarkable object.  By fitting the H I, He I, and He II lines in its optical spectrum with non-LTE models, we derive an effective temperature Teff = 36,000 K, a gravity log g = 3.95, and a helium abundance N(He)/N(H) = 0.15.  By comparing absorption features in the star’s FUSE and STIS spectra with a set of synthetic spectra, we can determine its photospheric abundances of C, N, O, Al, Si, P, S, Fe, and Ni.  No features from elements beyond the iron peak are observed.

Dixon_fig1Figure 1.  Comparison of the abundances derived for vZ 1128 (filled symbols) with those of the solar photosphere (short horizontal lines) and of RGB stars in M3 (rectangles).  Stellar abundances derived without an additional source of line broadening are plotted as circles, those allowing for stellar rotation are plotted as triangles, and those allowing for microturbulence are plotted as squares.

In Figure 1, the measured abundances of vZ 1128 (solid symbols) are compared with those of the sun (short vertical lines; Asplund et al. 2009) and the RGB stars in M3 (rectangles).  Cluster C and N abundances are from Smith et al. (1996), and the O, Al, Si, Fe, and Ni values are from Sneden et al. (2004).  The vertical extent of each rectangle represents the star-to-star scatter in the measured abundance (±1σ about the mean).  Beginning with the most massive elements, we see that the abundances of Si, Fe, and Ni are nearly constant along the RGB.  The scatter is much larger for CNO and Al, reflecting well-known abundance variations in globular-cluster giants (Kraft 1994).  For all of these elements, the measured abundances of vZ 1128 are consistent with those of the RGB stars.


Figure 2.  Abundance ratios of red giants in the globular clusters M3 (triangles) and M13 (squares).  CN-rich stars are plotted as solid symbols, CN-poor stars as open symbols.  The abundances of C and O are correlated, N and O are anticorrelated, and the total abundance of (C+N+O) is essentially constant, consistent with the products of CNO-cycle processing.  The abundance ratios of vZ 1128 in M3 (circles) are consistent with the patterns seen in the RGB stars.

In Figure 2, we reproduce a plot from Smith et al. (1996), who studied variations in the CNO abundances of RGB stars in M3 and M13, which have similar metallicities.  They found that the abundances of C and O are correlated, the N abundance is anticorrelated with both C and O, and the total abundance C+N+O is nearly constant.  These patterns can be explained as the result of CNO-cycle hydrogen burning on the RGB, which converts carbon (rapidly) and oxygen (slowly) into nitrogen, but leaves the total C+N+O abundance unchanged.  Some form of mixing brings this CNO-processed material to the surface (Gratton et al. 2000); as the star ascends the RGB, it moves from right to left in Figure 2.  Comparing abundances derived from non-LTE models of an O-type star observed in the FUV with those derived from LTE models of K-type giants observed in the optical is dangerous; nevertheless, we have added vZ 1128 to Figure 2.  Though its carbon abundance is a bit high, the star’s CNO abundances follow the trends seen in the cluster’s RGB stars remarkably well.

The effective temperature and luminosity of vZ 1128 place it on the 0.546 M post-AGB evolutionary track of Schönberner (1983).  This track traces the evolution of a star that leaves the AGB before the onset of thermal pulsing and the attendant churning of its envelope known as third dredge-up.  Such objects are called post-early AGB (post-EAGB) stars.  This scenario is consistent with the abundance pattern seen in the star’s photosphere: its carbon abundance is not enhanced, nor are any s-process elements detected.  We conclude that vZ 1128 has not undergone third dredge-up.  Indeed, it appears that no significant changes in its photospheric composition have occurred since the star left the RGB.

That vZ 1128 is not a bona fide post-AGB star is not really a surprise. Post-AGB stars evolve quickly, remaining luminous for only 103–104 years, while post-EAGB stars remain luminous for 104–105 years (Schönberner 1981, 1983). Of the roughly one dozen UV-bright stars in globular clusters whose spectra have been analyzed to date (see Moehler 2010 for a review), only two show the enhanced carbon abundance expected of a star that underwent third dredge-up. The first, K648 in M15 (Rauch et al. 2002), hosts a planetary nebula, so most certainly evolved to the tip of the AGB. The second, ZNG 1 in M5, lacks a nebula, and its high helium abundance and high rotational velocity suggest an unusual evolutionary history (Dixon et al. 2004). The dearth of carbon-rich post-AGB stars in galactic globular clusters is consistent with the short lifetimes of these rare objects.




  1. Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
  2. Dixon, W. V., Brown, T. M., Landsman, W. B. 2004, ApJ, 600, L43
  3. Gratton, R. G., Sneden, C., Carretta, E., Bragaglia, A. 2000, A&A, 354, 169
  4. Kraft, R. P. 1994, PASP, 106, 553
  5. Moehler, S. 2010, MmSAI, 81, 838
  6. Schönberner, D. 1981, A&A, 103, 119
  7. Schönberner, D. 1983, ApJ, 272, 708
  8. Sneden, C., Kraft, R. P., Guhathakurta, P., Peterson, R. C., & Fulbright, J. P. 2004, AJ, 127, 2162
  9. Smith, G. H., Shetrone, M. D., Bell, R. A., Churchill, C. W., & Briley, M. M. 1996, AJ, 112, 1511
  10. Strom, S. E., & Strom, K. M. 1970, ApJ, 159, 195
  11. von Zeipel, H. 1908, Annales de l’Observatoire de Paris, 25, F1
Sep 242014

By Elodie Choquet, Postdoctoral Fellow at STScI

Debris disks are cold dust belts hosted by some main-sequence stars, composed of micrometer-size grains to kilometer-size planetesimals. As left-overs from planet formation, the study of these young cousins of our own solar system’s Kuiper belt can help us to better understand how planets are formed.

To do so, we need to image these disks in the visible or near-infrared, to deduce their composition and physical properties from the starlight scattered by the dust, and maybe also detect signposts of planets in their geometry. However, despite numerous surveys with the Hubble Space Telescope (HST) and the largest ground-based telescopes, only 19 debris disks had been imaged in scattered light so far. As far as planets are concerned, only 24 have been directly imaged, in significant contrast with the large numbers of discoveries by the radial velocity and the transit methods (with hundreds and thousands of planet detections respectively).

This is due to the very high contrast between the host star and the light reflected by a disk or emitted by a planet (more than a million times fainter!). To achieve such challenging detections, the instruments need to be equipped with carefully optimized coronagraphs, and with efficient adaptive optics systems for ground-based telescopes, and furthermore, the observer has to apply post-processing techniques on the resulting images to detect the dim circumstellar material.

The classical post-processing method consists of subtracting the image of a reference star from the science image to reveal material in its vicinity. However, such a subtraction is never perfect due to telescope instabilities and/or residual wavefront errors, and residual starlight still impedes the detection of cold material within 2’’ of the star (Fig. 1). New algorithms have been recently developed to solve this issue, by using large libraries of reference star images to generate a synthetic image of the star optimized to the actual science image. These new techniques improve the starlight subtraction by a factor of 10 to 100 over the classical method (Fig. 2).


Figure 1: The Principle of the classical post-processing technique: the image of a reference star is subtracted from the science image to remove the starlight. Although this method improves the contrast by a factor of 5 to 10 compared to the raw image, the telescope instabilities prevent the detection of any material within 2’’ from the star.


Figure 2: Images of the debris disk around HD181327 reduced with the classical technique (left, from [1]) and with the KLIP algorithm [2] (right, from [3]). This advanced post-processing algorithm typically improves the contrast by a factor of 10 to 100 over the classical method.

Our team has thus started the project of reprocessing the entire HST-NICMOS coronagraphic archive with such advanced algorithms to reveal new disks and planet candidates [4]. The archive is composed of images of 400 stars observed in the near-infrared between 1997 and 2008 and have been underexploited by the use of mainly old post-processing techniques. Among our recent discoveries from this project is the detection of five debris disks seen for the first time in scattered light (Fig. 3). These detections increase the total number by more than 20%. The on-going analysis and modeling of these disks should tell us more about their composition and properties and maybe present hints of possible planets.


Figure 3: Five debris disks newly revealed in scattered light from the HST-NICMOS archive, discovered by reprocessing the images with advanced post-processing algorithm (from Soummer et al. 2014).



  1. Schneider et al. 2006, ApJ 650, 414
  2. Soummer, Pueyo & Larkin, 2012, ApJ 755, 28
  3. Soummer et al. 2014, ApJ 786, 23
  4. Choquet et al 2014, Proc. SPIE, 9143-199
Aug 022014

By Peter McCullough, Associate Astronomer at STScI

“The third time’s the charm” applies to this story.

Some planets pass in front of the stars they orbit. We call that a “transit.” One of the brightest stars with a transiting planet is HD 189733. That makes it attractive for scientific study, because the more photons one collects, the more precise a measurement can be made. The planet that orbits it is also a large one, a gas giant planet like Jupiter, similar in size and mass, but much hotter because the planet that orbits HD 189733 does so with a period of only 2 days! I am eight thousand “years” old in HD 189733b “years”!

That star also happens to have a lot of prominent star spots; from the rotational modulation of its light curve, with an amplitude of ~2% peak to valley, HD 189733 is “spottier” than 95% of all stars of similar spectral type. We know the statistics of stars in general from the Kepler mission.

Since it was first discovered to have a transiting planet approximately a decade ago, the planet HD 189733b has been the subject of scores of observational campaigns. The depth of the transit tells us the square of the ratio of the planet’s radius to the star’s radius. However, the radius of the planet’s silhouette in front of the star depends on wavelength because the grazing rays of starlight passing by the planet pass through its upper atmosphere and hence are affected differently according to the composition of the planet’s atmosphere. Hence, by taking spectra of the star-planet system during transits, we can measure the composition of the planet’s atmosphere. In this case we were searching for water, and our “divining rod” was the WFC3 instrument on Hubble. We were not sure we’d detect it – prior attempts had failed: with the older NICMOS instrument the results were plagued by systematic effects, and even two recent attempts with the new WFC3 instrument had failed. The first attempt failed because the bright star saturated the detector, and second attempt failed because of a miscommunication about a software update that caused the planet to be observed when the Earth itself was between Hubble and the star – blocking out the scene at the critical hour when the planet was transiting the star. We hoped that this third attempt “would be the charm”!

It was. We obtained excellent WFC3 data on June 5, of 2013 and found a clear signature of water vapor at 1.4 microns in the spectrum taken during transit that was not there before or after the transit. In a recent press release, dated July 24, 2014, my colleague N. Madhusudhan describes this measurement, and two others, as the first measurements of a chemical compound in exoplanets. To be sure, although we and others have detected water vapor before in exoplanets, those detections were tentative enough that the water concentration could not be quantified much better than to say that it was greater than zero.

For planet HD 189733b, there were some that expected we would not see the signature of water vapor. While they expected that gaseous water ought to be present, they imagined that it would be obscured from our view by a haze layer, much like the buildings of Los Angeles or Beijing can be obscured by smog. This expectation was based on prior Hubble observations made with the instruments STIS and ACS.

The working hypothesis, developed over the past few years by Frederic Pont and his colleagues, to explain the ensemble of data from the Hubble and Spitzer space telescopes has been that a haze layer in the upper atmosphere of the planet Rayleigh-scatters light, creating a circular silhouette of the planet that is largest in the ultraviolet and smoothly decreases ever so slightly with wavelength into the near-infrared until it bottoms out and is nearly flat in the thermal infrared. Figure 1 comes from our ApJ paper (McCullough et al. 2014, 791, 55) . One way to shoe-horn the new detection of water vapor into what had become the consensus model is to presume that the water vapor occurs at higher altitudes than the haze layer. Although that is still plausible, in investigating the various models I became less and less confident that the consensus was correct. Another model may apply equally well or better.



Figure 1. Transmission spectrum of the exoplanet HD 189733b. Observations: The upper WFC3 spectrum from our analysis (black open circles) is as-observed; the mean transit depth for the WFC3 data is approximately at the same level as the ∼1 μm end of the ACS data (blue open circles) reported by Pont et al. (2008), which had been corrected for an assumed unocculted star spot level of 1%. The lower WFC3 spectrum (black filled circles) has been shifted down by 300 ppm to better match the ACS data (blue filled circles) corrected for an unocculted star spot level of 1.7% by Pont et al. (2013). Models: One model (upper, red line) combines two effects: 1) unocculted star spots with temperature T(spot) = 3700 K and spot fractional area δ = 0.056, and 2) a clear planetary atmosphere of solar composition, a mixing ratio for water of 5×10-4, and zero alkali metal lines (Na and K) for a gas giant planet with physical parameters commensurate with HD 189733b. The other model (lower, orange line) is solely the contribution of the unocculted star spots of the first model. Both models have been smoothed with a Gaussian of FWHM=0.089 μm for clarity.

The core of my idea was expressed also by Pont and his colleagues before our WFC3 observations. They had noted that uncertainty about spots on the face of the star could create uncertainty in the slope in the spectrum from the UV through the visible to the near-infrared, nominally attributed to Rayleigh-scattering in the planet’s atmosphere. Recall that the measurement, namely the transit depth, depends on the square of the ratio of the planet’s radius to the radius of the star. Obviously, either the planet or the star can affect the ratio. If the star has spots off the transit chord, i.e. they are on the star but never occulted by the planet, those spots can mimic the “Rayleigh-scattering slope.” Here’s why. The spots are cooler and redder than the stellar photosphere. Such a spot will cause the transit depth to be deeper than it would be otherwise, which we might misinterpret as the planet’s radius being larger.  And because cooler spots are also redder than the photosphere, the spot is relatively darker in the blue than the red. Thus, we might interpret the observed fact that the transit is deeper in the blue than the red, as either (A) the planet being larger in the blue (i.e. Rayleigh scattering) or (B) the star having unocculted spots that have not been fully accounted for. Pont’s team was aware of all that, but their best estimate of the number and temperature of spots seemed too small to them to account for all of the spectrum’s slope, which they therefore attributed to model A. When we examined the same data, and added the new WFC3 data showing a water-vapor feature in the near infrared, we re-interpreted the combination of old and new data with model B.

The overall lesson from this story is that even for one of the best objects to study, namely one of the closest transiting exoplanets to Earth, and a large gas-giant planet at that, the interpretation of the observations is still unsettled. That is unsatisfying, challenging, and fun, all at the same time. So it is with science. Hopefully a more thorough interpretation of existing data and/or even better data obtained with future instruments or telescopes such as JWST will solve this puzzle.


Jul 212014

By Karoline Gilbert, Assistant Astronomer at STScI.

Stellar halos are built largely from the accretion and disruption of satellite galaxies. Tidal debris features from these disruption events remain identifiable for billions of years, providing observable signatures of the merger histories of individual galaxies. However, in situ star formation may also play a part in building up the inner regions of stellar halos, either via stars formed in the proto-disk of the host galaxy, or in gas deposited by disrupted satellites.

Therefore, studying stellar halos in detail provides a window into the formation histories of galaxies. With current instrumentation, the only stellar halos that can be studied in great detail are the Milky Way and Andromeda (aka M31), the two large spiral galaxies of the Local Group.

I am a member of the SPLASH collaboration (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo). Our team has amassed a large photometric and spectroscopic dataset of red giant branch stars in M31′s halo and dwarf galaxies. Our photometric data are primarily taken with the Mosaic camera on the Mayall 4-m telescope on Kitt Peak, and include narrow band imaging that allows us to select spectroscopic targets with a high probability of being M31 stars. Our spectroscopic data are taken with the DEIMOS multi-object spectrograph on the Keck II 10-m telescope.


Figure 1: The locations of our Keck/DEIMOS spectroscopic fields in M31′s stellar halo, overlaid on the PAndAS starcount map (McConnachie et al. 2009). Our spectroscopic observations target fields on and off halo substructure, and cover a large range in radius.

My recent focus is on leveraging the full M31 halo dataset (shown in Figure 1) to learn about the global properties of M31′s stellar halo, and the ensemble of disrupted dwarf galaxies that built it. We have used this dataset to show that M31′s stellar halo extends to at least 180 kpc in projection from the center of M31. Furthermore, the density profile of stars shows no indication of a break, even though we are now tracing it to 2/3 of M31′s virial radius (Gilbert et al. 2012).

I am currently using the M31 halo dataset to analyze the metallicity distribution of M31 halo stars as a function of radius. We have spectra of over 1500 M31 stars in 32 spectroscopic fields ranging in distance from 9 to 180 kpc from M31′s center. The data show a clear gradient in metallicity that extends to 100 kpc (Figure 2). This gradient is seen in both the photometric (based on a star’s position in the color-magnitude diagram) and spectroscopic (based on the strength of the Calcium II triplet absorption feature) metallicity estimates.

Our spectra allow us to analyze the velocity distributions of stars in each field and to identify tidal debris features by their cold kinematical signatures. When we remove stars associated with tidal debris, the strength of the observed metallicity gradient increases.


Figure 2: Metallicity Distribution Functions of stars in M31′s halo: (top left) all M31 halo stars; (top right) after removal of tidal debris features; (bottom) cumulative distributions for all halo stars (solid curves) and after removal of tidal debris features (dashed curves). Arrows mark the median [Fe/H] values for each distribution. The inner halo is primarily metal-rich, while the outer halo is significantly more metal-poor. The data show evidence of a metallicity gradient in M31′s stellar halo extending from 9 kpc to ~100 kpc.

This large-scale metallicity gradient, when compared to the results of simulations of stellar halo formation, implies that the bulk of M31′s stellar halo was likely built primarily from one to a few relatively massive dwarf galaxies (>109 solar masses).

However, we also observe significant field-to-field scatter in the mean metallicities and surface brightnesses of fields at large radius. This implies that recently accreted, small dwarf galaxies have contributed substantially to the outermost regions of M31′s stellar halo.

If you are interested in learning more, a paper presenting these results is in progress. It should appear on astro-ph in the next few months! You can also check out other recent SPLASH papers, discussing the extended surface brightness profile of M31 (Gilbert et al. 2012), the properties of the inner regions of M31′s stellar halo (Dorman et al. 2012 and Dorman et al. 2013), and our spectroscopic survey of M31′s dwarf galaxies (Tollerud et al. 2012).

Jul 072014

By David Soderblom, Astronomer at STScI

It’s exciting to witness history being made, especially if it’s a long-awaited event.  The afternoon of October 6, 1995 was that time.  Several hundred astronomers were in Florence, Italy for the ninth in a series of scientific meetings on Cool Stars, Stellar Systems, and the Sun.  The Cool Stars series was started by Andrea Dupree in 1980 in Cambridge, Massachusetts, and they continue to be held every two years.  Cool Stars 9 was the first to be held outside the U.S., and Roberto Pallavicini from Florence’s Arcetri Observatory led the group that organized and hosted the meeting.

Florence is a delightful place to be under almost any circumstances: warm, sunny, good food, and great sights.  But everyone was very focused that afternoon.  In the morning we were told that there’d be a special short talk later, and the buzz over lunch was that Michel Mayor of the Geneva Observatory, working with Didier Queloz, had a rock-solid detection of a planet around another Sun-like star to report.

When we returned to the meeting hall after lunch I made sure to get a seat up front.  Nobody really knew anything yet, just that a big announcement was coming.  We all knew Mayor and Queloz were searching for planets, so what else could it be?  But which star, and what kind of planet?  All the brighter Sun-like stars were well known to many of us, so it was probably a star we’d heard of and studied ourselves.

We then had to sit through most of the afternoon’s scheduled talks; they were selected to be interesting in the first place, but at this point were being eclipsed by the Main Event.  As the time grew near for Mayor’s presentation some people with television cameras started filtering into the back of the room.  Mayor showed us his observations and conclusions, and there was little to argue with.  There was warm and enthusiastic applause: the prey so long sought had been nabbed.

So why did it take so long?  It’s been pointed out that 51 Pegasi, the host star to this planet, was misclassified as being evolved.  But that in itself wouldn’t preclude detecting the planet that was found.  A big part of the reason is simply that 51 Peg B – the planet – was so very different than anyone ever expected.  Or, to be more precise, it was located where we did not think we’d find planets: close in to the host star.

The conventional wisdom was that other planetary systems would be like ours, with analogs to Jupiter at great distances and with long periods that would take years of careful measurements to detect.  At the time I imagined the process Mayor and Queloz must have gone through.  They’d been observing 51 Peg and stars like it for some time, hoping to see very small changes in the motions of the stars that would indicate a planetary companion.  51 Peg showed larger variations than they could make sense of, so they started observing it more often, maybe every month instead of a few times per year.  And still, 51 Peg showed some kind of motion going on but with no clear period.  So they started observing it every week, and still no period to the variations.  It was only when they measured it every night for a few weeks that the 4.2-day period became blindingly obvious.  They had it!

Once the realization dawned that these “hot Jupiters” could exist so close to a star they became fairly easy to find because they produce much larger signals than more distant planets.  The race was on and over the next several years there were dozens and dozens of new exoplanets announced by Mayor’s group and a competing group led by Geoff Marcy in California.  There was no turning back.  History was made.

Scientific meetings like Cool Stars 9 often feature an invited talk at the end by a senior researcher who provides a summary of the high points and his or her views on their significance and implications for the near future.  That person that time was Jeff Linsky, from Boulder CO.  But Linsky played hooky to visit museums the afternoon that Mayor made his presentation and so he missed it.  His conference summary mentions nothing of the one talk that will be remembered longest.

Finally, it is now nearly 20 years since Cool Stars 9.  I was conscious of events at the time, but the details are getting fuzzier, and the recollections of others may sound different.